Project description:We conducted a culture experiment by deeply submerging plants in swine wastewater in culturing Iris tectorum and co-culturing Iris tectorum and Dictyosphaerium sp., and found that the plants grew sub-normal in the plant-microalgae co-culture while the plants were dead after 21 days in the plant culture. We generated a comprehensive RNA-seq dataset from the submerged Iris tectorum leaves in both the plant culture and the plant-microalgae co-culture, aiming at providing information on the response mechanisms of the plants to waterlogging stress. Besides raw reads of the RNA-seq dataset, we used DEseq2 algorithms to detect the differently expressed genes in the plants between the different cultures. Additionally, we performed the plant disease resistance gene analysis for all the differentially expressed genes.
Project description:To investigate the mechanism by which the microalgae-yeast co-culture system promotes wastewater denitrification. We concluded that microalgae and yeast exhibit a mutually beneficial relationship in the co-culture system. Microalgae nitrogen metabolism can be influenced by both miRNA and mRNA, and the presence of yeast stimulates gene expression in microalgae.
Project description:Tuberculosis Immune Reconstitution Inflammatory Syndrome (TB-IRIS) frequently complicates combined anti-retroviral therapy (ART) and anti-tubercular therapy in HIV-1 co-infected tuberculosis (TB) patients. The immunopathological mechanism underlying TB-IRIS is incompletely defined. Differential transcript abundance in PBMC from IRIS and control patients stimulated with heat killed H37Rv was determined by microarray Blood samples were collected during longitudinal observational studies of TB-IRIS patients and controls (both groups HIV-infected patients placed on antiretroviral treatment). PBMC were stimulated with heat killed H37Rv and RNA extracted.
Project description:In this study, we exposed Caenorhabditis elegans wild types N2 to water collected from six sources in the Dutch village Sneek. The sources were: wastewater from a hospital, a community (80 households), a nursing home, influent into the local municipal wastewater treatment plant, effluent of the wastewater treatment plant, and surface water samples. The goal of the experiment was to determine if C. elegans can be used to identify pollutants in the water by transcriptional profiling. Age synchronized worms at developmental L4 larval stage were exposed to treatment for 24 hours. After flash freezing the samples, RNA was isolated, labeled and hybridized on oligo microarray (Agilent) slides.