Project description:The objective is to generate a robust and validated predictor profile for chemotherapy response in patients with mCRC using microarray gene expression profiles of primary colorectal cancer tissue. To define a gene signature of response to chemotherapy in metastatic colorectal cancer, samples were obtained from 40 patients from Marques de Valdecilla Hospital who underwent primary surgery. Gene expression was detected and quantified using the Human Whole Genome U133 Plus 2.0 array (Affymetrix), containing 54675 human gene probes. The validation set consisted of 119 samples from Hospital Virgen del Rocio, Seville, Spain; Hospital Virgen de la Victoria, Malaga, Spain; Hospital de la Merced, Osuna, Spain and Hospital MarquM-CM-)s de Valdecilla, Santander, Spain, and included 86 tumor samples (40 coming from the training set and 46 from newly treated CRC patients) and 33 normal tissue samples of CRC patients used as controls. Custom-designed TaqManM-BM-. Low Density Arrays (TLDA) 7900 HT Micro Fluidic Cards including the 161 genes selected for validation were run and analyzed by the ABI PRISMM-BM-. 7900HT Sequence Detection System (SDS 2.2, Applied Biosystems) according to manufacturer's protocol (Applied Biosystems). Expression of target miRNAs was normalized in relation to the expression of GAPDH. Cycle threshold (Ct) values were calculated using the SDS software v.4.2 using automatic baseline settings and a threshold of 0.2. Relative quantification of gene expression was calculated by the 2M-bM-^HM-^RM-NM-^TCt method (Applied Biosystems user bulletin no. 2 (P/N 4303859)). This submission represents the RT-PCR component of the study only
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Transcriptional profiling of Pinus pinaster adult needles in a complete year. The needles were isolated by year emergence (whorl) in four groups. 0 (2012), 1 (2011), 2 (2010) and 3 (2009). The samples were harvested at 1245 m of altitude at Los Reales de Sierra Bermeja (Spain) (30S X:303.095 Y:4.039.618) one time per month.
Project description:Gill proteome samples from four populations of threespined sticklebacks; Six biological replicates each for 4 different populations: Bodega Harbor, CA (fully plated, marine), Lake Solano (low-plated, freshwater), Laguna de la Bocana del Rosario, Mexico (low plated, brackish water, warm-adapted), Westchester Lagoon, AK (fully plated, brackish water); More information and results of data analysis at CAMP Proteome, accession number CAMPDDA00023 (https://kueltzlab.ucdavis.edu/CAMP_dda_profiles.cfm?AC=CAMPDDA00023).