Project description:To delineate the role of microRNAs in the site-specific injury response, we compared the microRNAome of skin and oral mucosa both at baseline and throughout the time course of wound healing.
Project description:When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. This study used an Affymetrix microarray platform to compare the transcriptomes of oral mucosa and skin wounds in order to identify critical differences in the healing response at these two sites. Using microarrays, we explored the differences in gene expression in skin and oral mucosal wound healing in a murine model of paired equivalent-sized wounds. Samples were examined from day 0 to day 10 and spanned all stages of the wound healing process. Unwounded matched tissue was used as a control. Tissue samples collected at each post-wounding time point, as well as control samples, were represented by 3 biological replicates.
Project description:Comparative analysis between oral and cutaneous wound healing in humans using paired and sequential biopsies during the repair process.
Project description:Wound healing within the oral mucosa results in minimal scar formation compared to wounds within the skin. We have recently demonstrated distinct differences in the ageing profiles of cells (oral mucosal and patient-matched skin fibroblasts) isolated from these tissues. We hypothesize that the increased replicative potential of oral mucosal fibroblasts may confer upon them preferential wound healing capacities. Passage-matched early cultures of oral mucosal fibroblasts and skin fibroblasts demonstrated distinct gene expression profiles with a number of genes linked to wound healing/tissue repair. We analyzed the gene expression profiles of oral mucosal and patient-matched skin fibroblasts for multiple patients both prior to (0h) and (6h) following a wounding stimulus. Differences in the gene expression profiles of oral mucosal and patient-matched skin fibroblasts were anlazyed for multiple patients both prior to (0h) and (6h) following a wounding stimulus. Serum starvation and subsequent stimulation provides a model for wounding and RNA extracted at 0h and 6h following this stimulus was hybridized to Affymetrix microarrays for analysis. We sought to compare the expression profiles both between oral and normal fibroblasts, in both serum depleted and stimulated conditions and also compare differences between patients.
Project description:Wound healing within the oral mucosa results in minimal scar formation compared to wounds within the skin. We have recently demonstrated distinct differences in the ageing profiles of cells (oral mucosal and patient-matched skin fibroblasts) isolated from these tissues. We hypothesize that the increased replicative potential of oral mucosal fibroblasts may confer upon them preferential wound healing capacities. Passage-matched early cultures of oral mucosal fibroblasts and skin fibroblasts demonstrated distinct gene expression profiles with a number of genes linked to wound healing/tissue repair. We analyzed the gene expression profiles of oral mucosal and patient-matched skin fibroblasts for multiple patients both prior to (0h) and (6h) following a wounding stimulus.
Project description:Impaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation, and tissue remodeling. Although wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combining transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic and metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, the tricarboxylic acid cycle, glutaminolysis, and β-oxidation in the later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and, to a lesser extent, glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation and fatty acid β-oxidation. These findings increase the understanding of wound metabolism and identify glycolysis and glutaminolysis as potential targets for therapeutic intervention.
Project description:The process of wound healing in humans is poorly understood. To identify spatiotemporal gene expression patterns during human wound healing, we performed single cell and spatial transcriptomics profiling of human in vivo wound samples.
Project description:When compared to skin, oral mucosal wounds heal rapidly and with reduced scar formation. This study used an Affymetrix microarray platform to compare the transcriptomes of oral mucosa and skin wounds in order to identify critical differences in the healing response at these two sites.
Project description:Urinary bladder wound healing is today pooorly chracterized. MicroRNAs are small non-coding RNA molecules with regulatory functions. In this study we aimed at identifying microRNAs expressed during bladder wound healing. We performed Affymetrix microRNA profiling of the rodent urinary bladder during healing of a surgically created wound.