Project description:Norway is the largest producer and exporter of farmed Atlantic salmon (Salmo salar) worldwide. Skin disorders correlated with bacterial infections represent an important challenge for fish farmers due to the economic losses caused. Little is known about this topic, thus studying the skin-mucus of Salmo salar and its bacterial community depict a step forward in understanding fish welfare in aquaculture. In this study, we used label free quantitative mass spectrometry to investigate the skin-mucus proteins associated with both Atlantic salmon and bacteria. In addition, the microbial temporal proteome dynamics during 9 days of mucus incubation with sterilized seawater was investigated, in order to evaluate their capacity to utilize mucus components for growth in this environment.
Project description:Bacterial pathogen Moritella viscosa, the causative agent of winter ulcer, causes heavy losses in Atlantic salmon aquaculture. The study compared responses in salmon reared under normal condition (G100) and fish exposed to hypoxia - 60% saturation of dissolved oxygen - at early life (G60). G60 showed lower survival after challenge. Analyses were performed in the most affected tissues: skin and spleen
Project description:Tenacibaculum finnmarkense is a novel Gram-negative, aerobic bacterial strain causing skin ulcers in Atlantic salmon. This is an emerging pathogen, which may cause serious problems to aquaculture. The study was designed to compare the life stages (smolt and posmolt) and to assess effects of environment (fresh and brackis water) on the course of disease and salmon responses to the pathogen.
Project description:This study investigates transcriptomic responses of Pacific salmon lice, Lepeophtheirus salmonis, to infection with the microsporidian Facilispora margolisi and/or exposure to emamectin benzoate (EMB), an antiparasitic agent commonly used in salmon aquaculture.
Project description:Salmon alphavirus (SAV) and Moritella viscosa causing respectively pancreatic disease and winter ulcer are among the most important pathogens threatening Atlantic salmon aquaculture. Fish is protected by vaccination with different rate of success. Here, responses to vaccination were assessed followed with pathogen challenges of vaccinated salmon and saline injected control.
Project description:PD and HSMI are viral diseases that cause heavy damages in Atlantic salmon aquaculture. This study was performed to examine and compare the time-courses of transcriptome responses to the causative agents - salmon alphavirus (SAV) and piscine reovirus (PRV).
Project description:Origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition was further examined using the recently developed RumenBactArray.
Project description:Recirculation systems (RAS), which reduce water consumption and improve pathogen control are increasingly used in Atlantic salmon aquaculture. Performance and adaptation of fish to new farming environment is actively investigated. Here, responses to crowding stress were compared in salmon reared in two systems (RAS with brackish water and flowthrough with full salinity water) at low and high density.
2021-04-27 | GSE173229 | GEO
Project description:Bacterial community in aquaculture environment