Project description:For transcript analysis of early hypersensitive and susceptible responses of Medicago truncatula to the powdery mildew pathogen, Erysiphe pisi, we compared transcripts from pathogen-inoculated and control (non-inoculated) plants 12 h after infection in resistant (A14), partially resistant (A20), and susceptible (DZA315.16) genotypes. Published in: Medicago truncatula to the powdery mildew 1 and anthracnose pathogens, Erysiphe pisi and Colletotrichum trifolii. Molecular Plant Pathology 8(3):307-319 Keywords: 1 time points and 3 genotypes
Project description:Erysiphe pisi causes powdery mildew disease in garden pea. It is a biotrophic ascomycete member necessitating a living host for its survival. An attempt to identify the global proteome of E. pisi pathogen is made using a sensitive and reliable nano LC-MS/MS approach. The protein profiling of two isolates of E. pisi; Ep01 and Ep02 varying for virulence upon testing on a commercial cultivar, Arkel led to the detection of a total of 211 and 214 distinct proteins in Ep01 and Ep03 isolates respectively. In addition, a total of 203 and 207proteins from Ep01 and Ep03 isolates respectively were found to be hypothetical or proteins with not yet predicted functions based on GO (biological process). The protein accessions detected in these isolates were categorized into functional protein classes with some of the identified proteins reported to be involved in pathogenesis or virulence. The proteins belonging to the functional classes like stress related, signal transduction and secondary metabolite formation might be involved in virulence and pathogenesis. The proteome proposed in this study would serve as a reference proteome to facilitate the understanding of the functional aspects of an obligate biotrophic fungal pathogen.
Project description:To explore the transcriptional regulations in pip5k1 pip5k2 mutant and wild type plants before or after inoculation with powdery mildew Erysiphe cichoracearum
Project description:Purpose: The powdery mildew fungus, Blumeria graminis, is an obligate biotrophic pathogen of cereals and has significant impact on food security (Dean et al., 2012). B. graminis f. sp. hordei (Bgh) is the causal agent of powdery mildew on barley (Hordeum vulgare L.). We sought to address the temporal regulation of membrane trafficking associated gene expression in barley-powdery mildew interactions. We created an isogenic panel of immune signaling mutants to address three main questions: (i) which Blumeria secreted proteins are differentially regulated in response to different compromised genotypes, (ii) which barley membrane trafficking genes are altered in response to pathogen attack, and (iii) how are these genes interacting across genotypes and infection stages.
Project description:Purpose: The powdery mildew fungus, Blumeria graminis, is an obligate biotrophic pathogen of cereals and has significant impact on food security (Dean et al., 2012. Molecular Plant Pathology 13 (4): 414-430. DOI: 10.1111/j.1364-3703.2011.00783.x). Blumeria graminis f. sp. hordei (Bgh) is the causal agent of powdery mildew on barley (Hordeum vulgare L.). We sought to identify small RNAs (sRNAs) from both barley and Bgh that regulate gene expression both within species and cross-kingdom.
Project description:To investigate the candidate genes governing Pm5.1 and their effects on powdery resistance, the RNA-sequencing based transcriptomes of the powdery mildew resistant segment substitution line SSL508-28 and recurrent parent D8 were compared 48 h after inoculation with the PM pathogen.
Project description:Purpose: The powdery mildew fungus, Blumeria graminis, is an obligate biotrophic pathogen of cereals and has significant impact on food security (Dean et al., 2012. Molecular Plant Pathology 13 (4): 414-430. DOI: 10.1111/j.1364-3703.2011.00783.x). Blumeria graminis f. sp. hordei (Bgh) is the causal agent of powdery mildew on barley (Hordeum vulgare L.). We sought to discover novel transcripts expressed following barley infection with blumeria.
Project description:Arabidopsis is a host to the fungal powdery mildew pathogen, Erysiphe cichoracearum, and a nonhost to Blumeria graminis f.sp. hordei, the powdery mildew pathogenic on barley. A screen for mutants that allowed increased entry by this inappropriate or nonhost pathogen on Arabidopsis led to the identification of PEN3. While pen3 mutants permitted both increased penetration and increased hyphal growth by B. g. hordei, they were unexpectedly resistant to E. cichoracearum. This resistance was correlated with the appearance of chlorotic patches and was salicylic acid-dependent. Consistent with this observation, microarray analysis revealed that the salicylic acid defense pathway was hyper-induced in pen3 relative to wild type following inoculation with either E. cichoracearum or B. g. hordei. The pen3 phenotypes result from a loss of function of AtPDR8, a ubiquitously and highly expressed ATP binding cassette transporter. PEN3 protein tagged with green fluorescent protein localized to the plasma membrane in uninfected cells. In infected leaves, the protein concentrated to high levels at infection sites and surrounded fungal penetration pegs. We hypothesize that PEN3 may be involved in exporting toxic substrates to sites of infection and that accumulation of these substrates intracellularly in the pen3 mutant may secondarily activate the salicylic acid pathway. Experiment Overall Design: Three week-old wild-type Col and mutant pen3 Arabidopsis thaliana plants were inoculated with Erysiphe cichoracearum, Blumeria graminis hordei, or not inoculated. 1 day post inoculation 16 rosettes were harvested per replicate. 4 replicates were perfomerd per treatment.