Project description:Here, we report on the gene expression profile of individual cells of the trochophore larva of the invasive freshwater bivalve Dreissena rostriformis as inferred from single cell RNA sequencing. We generated transcriptomes of 632 individual cells and identified seven transcriptionally distinct cell populations. Developmental trajectory analyses identify cell populations that, for example, share an ectodermal origin such as the nervous system, the shell field, and the prototroch. To annotate these cell populations, we examined ontology terms from the gene sets that characterize each individual cluster. These were compared to gene expression data previously reported from other lophotrochozoans. Genes expected to be specific to certain tissues, such as Hox1 (in the shell field), Caveolin (in prototrochal cells), or FoxJ (in other cillia-bearing cells) provide evidence that the recovered cell populations contribute to various distinct tissues and organs known from morphological studies. This dataset provides the first molecular atlas of gene expression underlying bivalve organogenesis and generates an important framework for future comparative studies into cell and tissue type development in Mollusca and Metazoa as a whole.
Project description:The Manila clam (Ruditapes philippinarum) is a cultured bivalve species with high worldwide commercial importance. Nevertheless, diseases can cause high economical losses. For this reason, the study of immune genes in bivalve mollusks has increased in the last years. The present work describes the construction of the first R. philippinarum microarray containing immune-related hemocyte sequences and its application for the study of the gene transcription profiles of hemocytes from clams challenged with Vibrio alginolyticus through a time course.