Project description:Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.
Project description:Teleost fish are the most diverse group of extant vertebrates and have varied digestive anatomical structures and strategies, suggesting they also possess an array of different host-microbiota interactions. Differences in fish gut microbiota have been shown to affect host development, the process of gut colonization, and the outcomes of gene-environment or immune system-microbiota interactions. There is generally a lack of studies on the digestive mechanisms and microbiota of agastric short-intestine fish however, meaning that we do not understand how changes in gut microbial diversity might influence the health of these types of fish. To help fill these gaps in knowledge, we decided to study the Mexican pike silverside (Chirostoma estor) which has a simplified alimentary canal (agastric, short-intestine, 0.7 gut relative length) to observe the diversity and metabolic potential of its intestinal microbiota. We characterized gut microbial populations using high-throughput sequencing of the V3 region in bacterial 16S rRNA genes while searching for population shifts resulting associated with fish development in different environments and cultivation methods. Microbiota samples were taken from the digesta, anterior and posterior intestine (the three different intestinal components) of fish that grew wild in a lake, that were cultivated in indoor tanks, or that were raised in outdoor ponds. Gut microbial diversity was significantly higher in wild fish than in cultivated fish, suggesting a loss of diversity when fish are raised in controlled environments. The most abundant phyla observed in these experiments were Firmicutes and Proteobacteria, particularly of the genera Mycoplasma, Staphylococcus, Spiroplasma, and Aeromonas. Of the 14,161 OTUs observed in this experiment, 133 were found in all groups, and 17 of these, belonging to Acinetobacter, Aeromonas, Pseudomonas, and Spiroplasma genera, were found in all samples suggesting the existence of a core C. estor microbiome. Functional metagenomic prediction of bacterial ecological functions using PICRUSt2 suggested that different intestinal components select for functionally distinct microbial populations with variation in pathways related to the metabolism of amino acids, vitamins, cofactors, and energy. Our results provide, for the first time, information on the bacterial populations present in an agastric, short-gut teleost with commercial potential and show that controlled cultivation of this fish reduces the diversity of its intestinal microbiota.
Project description:Purpose: The goal of this study is to compare endothelial small RNA transcriptome to identify the target of OASL under basal or stimulated conditions by utilizing miRNA-seq. Methods: Endothelial miRNA profilies of siCTL or siOASL transfected HUVECs were generated by illumina sequencing method, in duplicate. After sequencing, the raw sequence reads are filtered based on quality. The adapter sequences are also trimmed off the raw sequence reads. rRNA removed reads are sequentially aligned to reference genome (GRCh38) and miRNA prediction is performed by miRDeep2. Results: We identified known miRNA in species (miRDeep2) in the HUVECs transfected with siCTL or siOASL. The expression profile of mature miRNA is used to analyze differentially expressed miRNA(DE miRNA). Conclusions: Our study represents the first analysis of endothelial miRNA profiles affected by OASL knockdown with biologic replicates.
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed