Project description:Clostridium sp. strain CT7 is a new emerging microbial cell factory with high butanol ratio owing to the non-traditional butanol fermentation mode with uncoupled acetone and 1,3-propanediol formation. Significant change of products profile was shown in glycerol- and glucose-fed strain CT7, especially much higher butanol and lower volatile fatty acids production from glycerol-fed one. However, the mechanism of this interesting phenomenon was still unclear. To better elaborate the bacterial response towards glycerol and glucose, the quantitative proteomic analysis through iTRAQ strategy was performed to reveal the regulated proteomic expression levels under different substrates. Proteomics data showed highly increased proteomic expression levels of proteins related with glycerol utilization and solvent generation under glycerol media. In addition, the up-regulation of hydrogenases, ferredoxins and electron-transferring proteins may attribute to the internal redox balance, while the earlier triggered sporulation response in glycerol-fed media may be associated with the higher butanol fermentation. This study will provide the platform for metabolic engineering of this emerging industrial microorganism for more efficient butanol production from glycerol.
Project description:Lactobacillus reuteri is a heterofermentative lactic acid bacterium best known for its ability to co-ferment glucose and glycerol. Its genome sequence has recently been deduced enabling the implementation of genome-wide analysis. In this study we developed a dedicated cDNA microarray platform and a genome-scale metabolic network model of L. reuteri and use them to revisit the co-fermentation of glucose and glycerol. The model was used to simulate experimental conditions and to visualize and integrate experimental data in particular the global transcriptional response of L. reuteri to the presence of glycerol. We show how the presence of glycerol affects cell physiology and triggers specific regulatory mechanisms allowing simultaneously a better yield and more efficient biomass formation. Furthermore we were able to predict and demonstrate for this well-studied condition the involvement of previously unsuspected metabolic pathways for instance related to amino acids and vitamins. These could be used as leads in future studies aiming at the increased production of industrially relevant compounds such as vitamin B12 or 1 3- propanediol. Keywords: cell type comparison Dye swap
Project description:Lactobacillus reuteri is a heterofermentative lactic acid bacterium best known for its ability to co-ferment glucose and glycerol. Its genome sequence has recently been deduced enabling the implementation of genome-wide analysis. In this study we developed a dedicated cDNA microarray platform and a genome-scale metabolic network model of L. reuteri and use them to revisit the co-fermentation of glucose and glycerol. The model was used to simulate experimental conditions and to visualize and integrate experimental data in particular the global transcriptional response of L. reuteri to the presence of glycerol. We show how the presence of glycerol affects cell physiology and triggers specific regulatory mechanisms allowing simultaneously a better yield and more efficient biomass formation. Furthermore we were able to predict and demonstrate for this well-studied condition the involvement of previously unsuspected metabolic pathways for instance related to amino acids and vitamins. These could be used as leads in future studies aiming at the increased production of industrially relevant compounds such as vitamin B12 or 1 3- propanediol. Keywords: cell type comparison Loop design