Project description:Comparison of transcription profile of Pichia pastoris cells grown on Glucose medium with Pichia pastoris cells grown on Methanol/Glycerol medium, the fermentations were done in a chemostat.
Project description:Comparison of transcription profile of Pichia pastoris cells grown on Glucose medium with Pichia pastoris cells grown on Methanol/Glycerol medium, the fermentations were done in a chemostat. 2 color experiment in reference design. Pichia pastoris reference mix [mixed pool of Pichia pastoris cells sampled from various conditions including cells grown on glycerine, glucose and methanol, on full andminimal medium, in stationary and exponential growth phase, and in different stress states]
Project description:Pichia pastoris is a widely used yeast platform for heterologous protein production. Although increasing gene dosage is a powerful strategy to improve recombinant protein production, an excess in the number of gene copies often leads to decreased product yields and increased metabolic burden. In order to find the bottlenecks of this strategy, here we present a transcriptome profile comparison of a series of Pichia pastoris strains carrying a different gene dosage of the Rhizopus oryzae lipase (Rol) as a model protein. Cells were grown on a mixture of glycerol:methanol in chemostat cultures. 2 color experiment in reference design.
Project description:We analyzed the chromatin accessibility and nucleosome positioning by ATAC-seq of both null and transgene-expressing strains of Komagataella phaffii (Pichia pastoris) under different growth conditions. These data enabled identification of the features that determine performance of various integration sites for transgene expression. Understanding chromatin accessibility and nucleosome positioning can provide further clarity into gene regulation and expression broadly in this organism.
Project description:The regulation of gene expression in Pichia pastoris has so far involved study of transcription factors. However, there are factors other than transcription factors affecting mRNA synthesis such as coactivators, enhancers, and chromatin modifiers. This study is a first ever report on epigenetic regulation in Pichia pastoris where, a histone acetyltransferase is reported to regulate transcription of genes involved in utilization of alternate carbon sources. We employed RNA Seq to identify new targets of Gcn5 in methanol medium.
Project description:The regulation of gene expression in Pichia pastoris has so far involved study of transcription factors. However, there are factors other than transcription factors affecting mRNA synthesis such as coactivators, enhancers, and chromatin modifiers. This study is a first ever report on epigenetic regulation in Pichia pastoris where, a histone acetyltransferase is reported to regulate transcription of genes involved in utilization of alternate carbon sources. We employed RNA Seq to identify new targets of Gcn5 in methanol medium.
Project description:Transcriptional profiling of Pichia pastoris cultivated at different specific growth rates in carbon and energy-limited aerobic chemostats and retentostats
Project description:Over the past three decades, due to the universal application of Pichia yeast in the fermentation industry as well as the establishment of Pichia pastoris fermentation process for more than 30 years, the technology of the whole process has become very mature and has now reached a stagnated period of growth. However, studies and research conducted on the genomics of the classic fermentation process and the uncovering of the biological phenomena in the fermentation process from the point of view of high-throughput gene or protein is still in its early stages, and there is still insufficient data within this field. First, in collaboration with Agilent Company, we designed and prepared an expression microarray that could be used for the detection of Pichia pastoris transcriptomics. The transcriptomic changes in the five key technology steps (time points), during the fermentation process of Pichia pastoris would then be detected with the aid of an expression microarray. The five key steps of technology described above formed two important biological processes, namely, the limiting carbon source replacement and secondly, the fermentative production of exogenous proteins. The biological phenomena involved in these two processes were displayed and analyzed at the transcriptional level. In addition to this, with regard to the most important function in the fermentation process of Pichia pastoris, oxid-reduction, the metabolic drift process was analyzed and the important genes that might dominate the changes in the metabolic flux were discovered creatively by using the function tree method in this paper. This study was undertaken from the point of view of the transcriptome and the biological phenomena in the fermemntation process of Pichia pastoris. Both of which, were thoroughly explained during this study. The hope is for many more researchers to optimize the strain fermentation process, to produce proteins at the genetic level, as well as providing and obtaining new perspectives and detailed scientific data for the continued development within this field. The transcriptomic changes in the five key technology steps (time points), during the fermentation process of Pichia pastoris would then be detected with the aid of an expression microarray.
Project description:Over the past three decades, due to the universal application of Pichia yeast in the fermentation industry as well as the establishment of Pichia pastoris fermentation process for more than 30 years, the technology of the whole process has become very mature and has now reached a stagnated period of growth. However, studies and research conducted on the genomics of the classic fermentation process and the uncovering of the biological phenomena in the fermentation process from the point of view of high-throughput gene or protein is still in its early stages, and there is still insufficient data within this field. First, in collaboration with Agilent Company, we designed and prepared an expression microarray that could be used for the detection of Pichia pastoris transcriptomics. The transcriptomic changes in the five key technology steps (time points), during the fermentation process of Pichia pastoris would then be detected with the aid of an expression microarray. The five key steps of technology described above formed two important biological processes, namely, the limiting carbon source replacement and secondly, the fermentative production of exogenous proteins. The biological phenomena involved in these two processes were displayed and analyzed at the transcriptional level. In addition to this, with regard to the most important function in the fermentation process of Pichia pastoris, oxid-reduction, the metabolic drift process was analyzed and the important genes that might dominate the changes in the metabolic flux were discovered creatively by using the function tree method in this paper. This study was undertaken from the point of view of the transcriptome and the biological phenomena in the fermemntation process of Pichia pastoris. Both of which, were thoroughly explained during this study. The hope is for many more researchers to optimize the strain fermentation process, to produce proteins at the genetic level, as well as providing and obtaining new perspectives and detailed scientific data for the continued development within this field.