Project description:Background. Dengue caused by dengue virus (DENV) serotypes -1 to -4 is the most important mosquito-borne viral disease in the tropical and sub-tropical countries worldwide. Yet many of the pathophysiological mechanisms of host responses during DENV infection remain largely unknown and incompletely understood. Methods. Using a mouse model, the miRNA expressions in liver during DENV-1 infection was investigated using high throughput miRNA sequencing. The differential expression of miRNAs were then validated by qPCR, followed by target genes prediction. The identified miRNA targets were subjected to gene ontology (GO) annotation and pathway enrichment analysis to elucidate the potential biological pathways and molecular mechanisms associated with DENV-1 infection. Results. A total of 224 and 372 miRNAs out of 433 known mouse miRNAs were detected in the livers of DENV-1-infected and uninfected mice, respectively; of these, 207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were the two most abundant miRNAs in both groups. Thirty-one miRNAs were found to have at least 2-fold change in upregulation or downregulation, in which seven miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-infected mouse livers. The miR-1a-3p was found to be the most downregulated miRNA in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly differentially expressed or most abundant, were accessed by qPCR and nine of them correlated positively with the one observed in deep sequencing. In silico functional analysis revealed that the adaptive immune responses involving TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23 highly differentially expressed miRNAs during DENV-1 infection. Conclusion. This study provides the first insight into the global miRNA expressions of mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs in modulating the adaptive immune responses during DENV-1 infection.
Project description:BackgroundDengue caused by dengue virus (DENV) serotypes -1 to -4 is the most important mosquito-borne viral disease in the tropical and sub-tropical countries worldwide. Yet many of the pathophysiological mechanisms of host responses during DENV infection remain largely unknown and incompletely understood.MethodsUsing a mouse model, the miRNA expressions in liver during DENV-1 infection was investigated using high throughput miRNA sequencing. The differential expressions of miRNAs were then validated by qPCR, followed by target genes prediction. The identified miRNA targets were subjected to gene ontology (GO) annotation and pathway enrichment analysis to elucidate the potential biological pathways and molecular mechanisms associated with DENV-1 infection.ResultsA total of 224 and 372 miRNAs out of 433 known mouse miRNAs were detected in the livers of DENV-1-infected and uninfected mice, respectively; of these, 207 miRNAs were present in both libraries. The miR-148a-3p and miR-122-5p were the two most abundant miRNAs in both groups. Thirty-one miRNAs were found to have at least 2-fold change in upregulation or downregulation, in which seven miRNAs were upregulated and 24 miRNAs were downregulated in the DENV-1-infected mouse livers. The miR-1a-3p was found to be the most downregulated miRNA in the DENV-1-infected mouse livers, with a significant fold change of 0.10. To validate the miRNA sequencing result, the expression pattern of 12 miRNAs, which were highly differentially expressed or most abundant, were assessed by qPCR and nine of them correlated positively with the one observed in deep sequencing. In silico functional analysis revealed that the adaptive immune responses involving TGF-beta, MAPK, PI3K-Akt, Rap1, Wnt and Ras signalling pathways were modulated collectively by 23 highly differentially expressed miRNAs during DENV-1 infection.ConclusionThis study provides the first insight into the global miRNA expressions of mouse livers in response to DENV-1 infection in vivo and the possible roles of miRNAs in modulating the adaptive immune responses during DENV-1 infection.
Project description:Background: Organ dysfunction, especially liver injury, caused by dengue virus (DENV) infection has been associated with fatal cases in dengue patients around the world. However, the pathophysiological mechanisms of liver involvement in dengue remain unclear. There is accumulating evidence that miRNAs are playing an important role in regulating viral pathogenesis, and it can help in diagnostic and anti-viral therapies development. Methods: We collected liver tissues of DENV-infected for small RNA sequencing to identify significantly different express miRNAs during dengue virus infection, and the identified target genes of these miRNAs were annotated by biological function and pathway enrichment. Results: 31 significantly altered miRNAs were identified, including 16 up-regulated and 15 down-regulated miRNAs. By performing a series of miRNA prediction and signaling pathway enrichment analyses, the down-regulated miRNAs of mmu-miR-484, mmu-miR-1247-5p and mmu-miR-6538 were identified to be the crucial miRNAs. Further analysis revealed that the inflammation and immune responses involving Hippo, PI3K-Akt, MAPK, Wnt, mTOR, TGF-beta, Tight junction, and Platelet activation were modulated collectively by these three key miRNAs during DENV infection. These pathways are considered to be closely associated with the pathogenic mechanism and treatment strategy of dengue patients. Conclusion: The miRNAs identified by sequencing, especially miR-484 may be the potential therapeutic targets for liver involvement in dengue patients which involves the regulation of vascular permeability and expression of inflammatory cytokines. In this study, RNA-Seq analysis of liver tissues from a mouse model after DENV infection was performed to identify differential miRNA expression profiles, predicted target genes, and analyzed the biological functions and pathways involved in the regulation of differential miRNAs, contributing to the understanding of the mechanisms of liver tissue involvement after DENV infection.
Project description:We report the application of illumina deep sequencing technology for high-throughput profiling of microRNA in aflatoxin B1 treated rat liver tissue, as well as normal liver tissue. miRNAs of miR-17-92 cluster, thought to be tumor activating miRNAs, were down-regulated. miR-34a, considered to be a tumor suppressor, was up-regulated.Novel miRNAs and miRNA base alteration caused by SNP or editing were predicted and summarized. Examination of 2 microRNA profiles in 2 liver tissues under different treatments.
Project description:We report the application of illumina deep sequencing technology for high-throughput profiling of microRNA in aflatoxin B1 treated rat liver tissue, as well as normal liver tissue. miRNAs of miR-17-92 cluster, thought to be tumor activating miRNAs, were down-regulated. miR-34a, considered to be a tumor suppressor, was up-regulated.Novel miRNAs and miRNA base alteration caused by SNP or editing were predicted and summarized.
Project description:Background: Dengue virus (DENV) infection induces various clinical manifestations and even causes organ injuries, leading to severe dengue haemorrhagic fever and dengue shock syndrome. Hepatic dysfunction was identified as a risk predictor of progression to severe disease during the febrile phase of dengue. However, the underlying mechanisms of hepatic injury remain unclear. Methods: A model of dengue disease was established in IFNAR−/− C57BL/6 mice by challenge with DENV-2. Body weight, symptoms, haematological parameters and liver pathological observations in mice were used to determine the effects of DENV infection. Liver transcriptome sequencing was performed to evaluate the features of the host response FNAR mice challenged with DENV. Functional enrichment analysis and analysis of significantly differentially expressed genes (DEGs) were used to determine the critical molecular mechanism of hepatic injury. Results: We observed haemoconcentration, leukopenia and liver pathologies in mice, consistent with findings in clinical dengue patients. Some differences in gene expression and biological processes were identified in this study. Transcriptional patterns in the liver indicated that antiviral responses to DENV and tissue damage via abnormal expression of proinflammatory cytokines were induced. Further analysis showed that the upregulated DEGs were significantly enriched in the leukocyte transendothelial migration, complement and coagulation cascades, and cytokine-cytokine receptor interactions signalling pathways, which are considered to be closely associated with the pathogenic mechanism of dengue. IL6, IL 10, ICAM-1, VCAM-1, MMP9 and NLRP3 were identified as biomarkers of progression to severe disease. Conclusions: The interactions of these cytokines, which activate inflammatory signalling, may lead to organ injury and haemoconcentration and even to vascular leakage in tissues, including the mouse liver. Our study identifies candidate host targets that could be used for further functional verification. In this study, we aimed to evaluate the transcriptomics features of liver injury in a mouse model of dengue virus infection based on a lethal animal model, and then perform a series of functional analyses to partially elucidate the underlying pathogenesis of DENV-induced liver injury.
Project description:Viable T cells (CD3+ CD19-) and B cells (CD3- CD19+) were sorted from PBMC samples obtained from 1 individual experiencing a natural secondary DENV infection. Single cell RNA sequencing analysis was performed on 3 time points
Project description:Dengue virus (DENV) is the causative agent of dengue, a mosquito-borne disease that represents a significant and growing public health burden around the world. A unique pathophysiological feature of dengue is immune-mediated enhancement, wherein preexisting immunity elicited by a primary infection can enhance the severity of a subsequent infection by a heterologous DENV serotype. A leading mechanistic explanation for this phenomenon is antibody dependent enhancement (ADE), where sub-neutralizing concentrations of DENV-specific IgG antibodies facilitate entry of DENV into FcR expressing cells such as monocytes, macrophages, and dendritic cells. Accordingly, this model posits that phagocytic mononuclear cells are the primary reservoir of DENV. However, analysis of samples from individuals experiencing acute DENV infection reveals that B cells are the largest reservoir of infected circulating cells, representing a disconnect in our understanding of immune-mediated DENV tropism. In this study, we demonstrate that the expression of a DENV-specific B cell receptor (BCR) renders cells highly susceptible to DENV infection, with the infection-enhancing activity of the membrane-restricted BCR correlating with the ADE potential of the IgG version of the antibody. In addition, we observed that the frequency of DENV-infectable B cells increases in previously flavivirus-naïve volunteers after a primary DENV infection. These findings suggest that BCR-dependent infection of B cells is a novel mechanism immune-mediated enhancement of DENV-infection.
Project description:The objective of this analysis was to determine the transcriptional signature associated with experimental DENV-1 infection in human volunteers. Nine flavivirus naive volunteers were challenged with an attenuated DENV-1 strain - 45AZ5 - and blood collected for RNA extraction and transcriptional analysis on days 0, 8, 10, 14, and 28 post challenge using PAXgene collection tubes. Total RNA was isolated from the collection tubes and subjected to RNAseq analysis to identify genes and gene sets that were differentially expressed across the infection time course.