Project description:Ammonia oxidizer community structure were examined in a depth profile from 20 to 2000 m at the Bermuda Atlantic Time-series Study using a functional gene microarray to look at amoA diversity
Project description:Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of microbial populations (metaproteomics), yet not their genomic abundance (16S rRNA gene amplicon sequencing), supporting the hypothesis that metabolic activity may be more closely linked to climate than community composition.
Project description:Microplastics (MPs) as widespread contamination pose high risk for aquatic organisms.Intestinal microbiotahas have high interaction with immune system of host body. In this study, intestinal microbiota of zebrafish after Polystyrene (PS-MPs) exposure were characterized by 16S rDNA amplicon sequencing. We found that 100nm and 200μm PS-MPs exposure significantly increased diversity of intestinal microbiota and all the three sizes of PS-MPs increased abundance of pathogenic bacteria.
Project description:The characterization of microbial community structure via 16S rRNA gene profiling has been greatly advanced in recent years by the application of amplicon pyrosequencing. The possibility of barcode-tagged sequencing of templates gives the opportunity to massively screen multiple samples from environmental or clinical sources for community details. However, an on-going debate questions the reproducibility and semi-quantitative rigour of pyrotag sequencing and, as in the early days of genetic community fingerprinting, pros and cons are continuously provided. In this study we investigate the reproducibility of bacterial 454 pyrotag sequencing over biological and technical replicates of natural microbiota. Moreover, via quantitatively defined template spiking to the natural community, we explore the potential for recovering specific template ratios within complex microbial communities. For this reason, we pyrotag sequenced three biological replicates of three samples, each belonging from yearly sampling campaigns of sediment from a tar oil contaminated aquifer in Düsseldorf, Germany. Furthermore, we subjected one DNA extract to replicate technical analyses as well as to increasing ratios (0, 0.2, 2 and 20%) of 16S rRNA genes from a pure culture (Aliivibrio fisheri) originally not present in the sample. Unexpectedly, taxa abundances were highly reproducible in our hands, with max standard deviation of ~3% abundance across biological and ~2% for technical replicates. Furthermore, our workflow was also capable of recovering A. fisheri amendmend ratios in reliable amounts (0, 0.29, 3.9 and 23.8%). These results highlight that pyrotag sequencing, if done and evaluated with due caution, has the potential to robustly recapture taxa template abundances within environmental microbial communities. 9 Biological and 3 technical replicates were evaluated, as well as potential to recover qPCR-defined ratios of DNA, in 454 pyrotag sequencing
Project description:Ammonia oxidizer community structure were examined in a depth profile from 20 to 2000 m at the Bermuda Atlantic Time-series Study using a functional gene microarray to look at amoA diversity Two color array (cy3 and cy5): the universal standard 20 bp oligo (fluoresced with cy5) is printed to the slide with a 70-mer. Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer will bind to it. Signal is the cy3/cy5. Two replicate arrays were run on duplicate targets.