Project description:We genotyped 45 new samples from 4 populations of Northwest India and combined it with previously published data to characterize the population structure of modern Northwest Indian populations in the context of their geographic neighbors across South Asia and West Eurasia.
2018-12-05 | GSE119653 | GEO
Project description:Metageome sequencing of deep-sea sediments from Sourthwest Indian Ocean
Project description:16s RNA gene sequencing data from seawater, bed sediment and steel corrosion samples from Shoreham Harbour, UK, collected to allow bacterial species comparisons between microbially influenced corrosion, the surrounding seawater, and the sea bed sediment at the seafloor and 50cm depth below seafloor.
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
2024-06-16 | PXD023247 | Pride
Project description:Microbial diversity of deep-sea sediments from the Indian Ocean
Project description:The available energy and carbon sources for prokaryotes in the deep ocean remain still largely enigmatic. Reduced sulfur compounds, such as thiosulfate, are a potential energy source for both auto- and heterotrophic marine prokaryotes. Shipboard experiments performed in the North Atlantic using Labrador Sea Water (~2000 m depth) amended with thiosulfate led to an enhanced prokaryotic dissolved inorganic carbon (DIC) fixation.
Project description:The marine copepod Calanus finmarchicus is the most abundant zooplankton species in the northern regions of the Atlantic Ocean and the Barents Sea. Very little is known about the molecular mechanisms underlying critical processes associated with this species’ complex life history (e.g., ontogenetic development, reproduction, molting, diapause) and physiology (e.g., digestion, neural processes, and membrane physiology). This study analyzed patterns of gene expression of C. finmarchicus samples collected from the Gulf of Maine (Northwest Atlantic Ocean) using a 1,000 expressed sequence tag (EST) microarray designed to assay genes of known physiological function and hypothesized ecological importance for C. finmarchicus. Replicate analyses compared adult females and final-stage juveniles (Copepodite-5) collected from surface (0-30m) and deep (130-170m) layers. Environmental data include detailed characterization of biological, chemical, and physical oceanographic parameters in the sampled water packets. All data were screened for artifacts, normalized and selected using a fold-change filter prior to analysis. Replicate comparisons were analyzed by Significance Analysis of Microarrays (SAM; Stanford University Labs) with a control for False Discovery Rate (FDR) and with Principle Component Analysis with evaluation of significance by one- or two-sample t-test in Acuity Microarray Informatics Software (Molecular Devices, Inc.). Gene Ontology Enrichment Analysis was carried out using GOEAST (http://omicslab.genetics.ac.cn/GOEAST/index.php) to assess functional relationships of selected genes and/or proteins. The results indicated: up-regulation of genes involved in cell division, protein synthesis and mating in deep females and juveniles; up-regulation of genes related to cellular homeostasis, circadian behavior and nervous system development in surface females; and up-regulation of genes related to muscle development and protein catabolism in deep juveniles versus deep females. KEGG pathway analysis using the Blast2GO suite (http://www.blast2go.org/) indicated: up-regulation of genes encoding enzymes related to the citrate cycle and anaerobic metabolism in deep females and juveniles; and up-regulation of genes encoding enzymes related to energy metabolism and osmoregulation in surface females.
Project description:An Autonomous Underwater Vehicle (AUV) and large volume underwater pumps were used to collect microbial biomass from offshore waters of the Sargasso Sea, from surface waters and into the deep ocean. Seawater collection was performed along a transect in the western North Atlantic Ocean beginning near Bermuda and ending off the coast of Massachusetts, capturing metabolic signatures from oligotrophic, continental margin, and productive coastal ecosystems.
Project description:In this study we characterize microbial community features on the surface of Indian Ocean. 11 samples were collected from Indian Ocean and subjected for quantitative metaproteomics analysis for taxonomic and functional analysis. Our results suggested that metabolic tuning at metaproteomics levels enabled microbial community to sustain stable when subjected to environmental perturbations in the oligotrophic ocean.