Project description:We investigated the effect of the REV-ERB agonists on human hepatocytes. Since SR9009 showed the highest anti-viral activity and has been extensively studied in vivo we performed a whole genome microarray on SR9009 (20 µM) treated Huh-7 cells
Project description:We mapped the genome-wide binding profiles of BMAL1 and REV-ERB⍺ during peak protein expression of each factor (ZT4, and ZT8, respectively) by ChIP-Seq in gastrocnemius muscles from control C57BL/6J mice.
Project description:This SuperSeries is composed of the following subset Series: GSE34018: Integral roles for Rev-erb alpha and Rev-erb beta in the circadian clock function [Expression array] GSE34019: Integral roles for Rev-erb alpha and Rev-erb beta in the circadian clock function [ChIP_seq] Refer to individual Series
Project description:The circadian clock acts at the genomic level to coordinate internal behavioral and physiologic rhythms via the CLOCK-BMAL transcriptional heterodimer. Although the nuclear receptors REV-ERB? and ? have been proposed to contribute to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential we generated comparative cistromes of both Rev-erb isoforms, which revealed shared recognition at over ~50% of their total sites and extensive overlap with the master clock regulator Bmal. While Rev-erb? has been shown to directly regulate Bmal expression, the cistromic analysis reveals a more profound connection between Bmal and Rev-erb? and ? regulatory circuits than previously suspected. Genes within the intersection of the Bmal and Rev-erb cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb?/? function by creating double-knockout mice (DKOs) profoundly disrupted circadian expression of core clock and lipid homeostatic genes. As a result, DKOs show strikingly altered circadian wheel-running behavior and deregulated lipid metabolism. These data reveal an integral role of Rev-erb?/? in clock function as well as provide a cistromic basis for the integration of circadian rhythm and metabolism. Total RNA was obtained from livers of wild-type and Liver-specific Reverb alpha/beta double knockout mice at ZT 0, 4, 8, 12, 16, and 20.
Project description:We report the genomic regions enriched for Rev-erb(beta) binding in WT mouse liver, in addition to the false positive regions enriched by ChIP for Rev-erb(alpha) in Rev-erb(alpha) KO liver. In conjunction with previously published data for Rev-erb(alpha) in GSE26345 (GSM647029, GSM647033, and GSM647034), we report the common and subtype specific cistromes for Rev-erb using a quantitative analysis method.
Project description:The circadian clock acts at the genomic level to coordinate internal behavioral and physiologic rhythms via the CLOCK-BMAL transcriptional heterodimer. Although the nuclear receptors REV-ERBα and β have been proposed to contribute to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential we generated comparative cistromes of both Rev-erb isoforms, which revealed shared recognition at over ~50% of their total sites and extensive overlap with the master clock regulator Bmal. While Rev-erbα has been shown to directly regulate Bmal expression, the cistromic analysis reveals a more profound connection between Bmal and Rev-erbα and β regulatory circuits than previously suspected. Genes within the intersection of the Bmal and Rev-erb cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erbα/β function by creating double-knockout mice (DKOs) profoundly disrupted circadian expression of core clock and lipid homeostatic genes. As a result, DKOs show strikingly altered circadian wheel-running behavior and deregulated lipid metabolism. These data reveal an integral role of Rev-erbα/β in clock function as well as provide a cistromic basis for the integration of circadian rhythm and metabolism.
Project description:The circadian clock acts at the genomic level to coordinate internal behavioral and physiologic rhythms via the CLOCK-BMAL transcriptional heterodimer. Although the nuclear receptors REV-ERBα and β have been proposed to contribute to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential we generated comparative cistromes of both Rev-erb isoforms, which revealed shared recognition at over ~50% of their total sites and extensive overlap with the master clock regulator Bmal. While Rev-erbα has been shown to directly regulate Bmal expression, the cistromic analysis reveals a more profound connection between Bmal and Rev-erbα and β regulatory circuits than previously suspected. Genes within the intersection of the Bmal and Rev-erb cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erbα/β function by creating double-knockout mice (DKOs) profoundly disrupted circadian expression of core clock and lipid homeostatic genes. As a result, DKOs show strikingly altered circadian wheel-running behavior and deregulated lipid metabolism. These data reveal an integral role of Rev-erbα/β in clock function as well as provide a cistromic basis for the integration of circadian rhythm and metabolism.
Project description:The circadian clock acts at the genomic level to coordinate internal behavioral and physiologic rhythms via the CLOCK-BMAL transcriptional heterodimer. Although the nuclear receptors REV-ERBα and β have been proposed to contribute to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential we generated comparative cistromes of both Rev-erb isoforms, which revealed shared recognition at over ~50% of their total sites and extensive overlap with the master clock regulator Bmal. While Rev-erbα has been shown to directly regulate Bmal expression, the cistromic analysis reveals a more profound connection between Bmal and Rev-erbα and β regulatory circuits than previously suspected. Genes within the intersection of the Bmal and Rev-erb cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erbα/β function by creating double-knockout mice (DKOs) profoundly disrupted circadian expression of core clock and lipid homeostatic genes. As a result, DKOs show strikingly altered circadian wheel-running behavior and deregulated lipid metabolism. These data reveal an integral role of Rev-erbα/β in clock function as well as provide a cistromic basis for the integration of circadian rhythm and metabolism. Identification of Reverb alpha and Reverb beta binding sites in mouse liver at ZT8