Project description:To further development of our gene expression signature for benign prostatic hyperplasia, we conducted expression profiles of BPH and normal samples.
Project description:To identify the genes differently expressed in the epithelium and the stromal of Benign Prostatic Hyperplasia (BPH), we collect the epithelium and the stromal from the patients with benign prostatic hyperplasia by laser micro-dissection. And then, Affymetrix HG-U133_Plus_2 gene-chip was used to detect and compare the expression level of genes. To find which genes are most abundantly expressed in epithelium and stromal and what is the role of these genes in the pathogenesis of BPH.
Project description:BPH samples harbored minimal copy number alterations, and the fraction of altered genome was far lower than primary prostate cancer and other neoplastic diseases.
Project description:To identify the genes differently expressed in the epithelium and the stromal of Benign Prostatic Hyperplasia (BPH), we collect the epithelium and the stromal from the patients with benign prostatic hyperplasia by laser micro-dissection. And then, Affymetrix HG-U133_Plus_2 gene-chip was used to detect and compare the expression level of genes. To find which genes are most abundantly expressed in epithelium and stromal and what is the role of these genes in the pathogenesis of BPH. 8 prostate tissues were collected from patients undergone transurethral resection of the prostate (TURP) with informed consent. Each tissue was embedded in O.C.T and subsequently used for laser micro-dissection. The total RNA was isolated from each sample and equally mixed for gene-chip assay.
Project description:Benign prostatic hyperplasia (BPH) is the most prevalent prostatic condition in older intact dogs; nonetheless, clinical diagnosis and management remain inconsistent. This study employed in-solution digestion coupled with nano-liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to assess serum proteome profiling of dogs with BPH and those dogs after castration.
Project description:Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms affect a large percentage of the male population and places a substantial burden on the world health system. Current therapies include 5-alpha reductase inhibitors and alpha-blockers that are only partially effective and pose a huge economic burden, emphasizing the urgent need for effective, economical therapies. We isolated nanovesicles from pomegranate juice (Punica Granatum) (referred to as ‘POM-NVs’) and report to our knowledge for the first time, that these vesicles possess therapeutic potential against BPH. Following extensive characterization of POM-NVs, we tested their therapeutic potential in vitro using BPH1 cell line and identified a potential anti-proliferative and pro-apoptotic effect. We further tested these vesicles using a clinically relevant xenograft mouse BPH model derived from human BPH tissues. Remarkably, POM-NVs could reverse the BPH phenotype conferred by TGF-β mediated signaling and induced epithelial-to-mesenchymal (EMT) reversal, leading to the restoration of prostate epithelial states in vivo and in vitro. Furthermore, these vesicles attenuated bone morphogenic protein 5 (BMP5) signaling, a cardinal alteration that is instrumental in driving BPH. Considering the large incidences of BPH and its associated economic burdens, our study has important implications and can potentially improve the clinical management of BPH.