Project description:Responses of photosynthetic organisms to sulfur starvation include (i) increasing the capacity of the cell for transporting and/or assimilating exogenous sulfate, (ii) restructuring cellular features to conserve sulfur resources, and (iii) modulating metabolic processes and rates of cell growth and division. We used microarray analyses to obtain a genome-level view of changes in mRNA abundances in the green alga Chlamydomonas reinhardtii during sulfur starvation. The work confirms and extends upon previous findings showing that sulfur deprivation elicits changes in levels of transcripts for proteins that help scavenge sulfate and economize on the use of sulfur resources. Changes in levels of transcripts encoding members of the light-harvesting polypeptide family, such as LhcSR2, suggest restructuring of the photosynthetic apparatus during sulfur deprivation. There are also significant changes in levels of transcripts encoding enzymes involved in metabolic processes (e.g., carbon metabolism), intracellular proteolysis, and the amelioration of oxidative damage; a marked and sustained increase in mRNAs for a putative vanadium chloroperoxidase and a peroxiredoxin may help prolong survival of C. reinhardtii during sulfur deprivation. Furthermore, many of the sulfur stress-regulated transcripts (encoding polypeptides associated with sulfate uptake and assimilation, oxidative stress, and photosynthetic function) are not properly regulated in the sac1 mutant of C. reinhardtii, a strain that dies much more rapidly than parental cells during sulfur deprivation. Interestingly, sulfur stress elicits dramatic changes in levels of transcripts encoding putative chloroplast-localized chaperones in the sac1 mutant but not in the parental strain. These results suggest various strategies used by photosynthetic organisms during acclimation to nutrient-limited growth.
Project description:Responses of photosynthetic organisms to sulfur starvation include (i) increasing the capacity of the cell for transporting and/or assimilating exogenous sulfate, (ii) restructuring cellular features to conserve sulfur resources, and (iii) modulating metabolic processes and rates of cell growth and division. We used microarray analyses to obtain a genome-level view of changes in mRNA abundances in the green alga Chlamydomonas reinhardtii during sulfur starvation. The work confirms and extends upon previous findings showing that sulfur deprivation elicits changes in levels of transcripts for proteins that help scavenge sulfate and economize on the use of sulfur resources. Changes in levels of transcripts encoding members of the light-harvesting polypeptide family, such as LhcSR2, suggest restructuring of the photosynthetic apparatus during sulfur deprivation. There are also significant changes in levels of transcripts encoding enzymes involved in metabolic processes (e.g., carbon metabolism), intracellular proteolysis, and the amelioration of oxidative damage; a marked and sustained increase in mRNAs for a putative vanadium chloroperoxidase and a peroxiredoxin may help prolong survival of C. reinhardtii during sulfur deprivation. Furthermore, many of the sulfur stress-regulated transcripts (encoding polypeptides associated with sulfate uptake and assimilation, oxidative stress, and photosynthetic function) are not properly regulated in the sac1 mutant of C. reinhardtii, a strain that dies much more rapidly than parental cells during sulfur deprivation. Interestingly, sulfur stress elicits dramatic changes in levels of transcripts encoding putative chloroplast-localized chaperones in the sac1 mutant but not in the parental strain. These results suggest various strategies used by photosynthetic organisms during acclimation to nutrient-limited growth. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Computed
Project description:Responses of photosynthetic organisms to sulfur starvation include (i) increasing the capacity of the cell for transporting and/or assimilating exogenous sulfate, (ii) restructuring cellular features to conserve sulfur resources, and (iii) modulating metabolic processes and rates of cell growth and division. We used microarray analyses to obtain a genome-level view of changes in mRNA abundances in the green alga Chlamydomonas reinhardtii during sulfur starvation. The work confirms and extends upon previous findings showing that sulfur deprivation elicits changes in levels of transcripts for proteins that help scavenge sulfate and economize on the use of sulfur resources. Changes in levels of transcripts encoding members of the light-harvesting polypeptide family, such as LhcSR2, suggest restructuring of the photosynthetic apparatus during sulfur deprivation. There are also significant changes in levels of transcripts encoding enzymes involved in metabolic processes (e.g., carbon metabolism), intracellular proteolysis, and the amelioration of oxidative damage; a marked and sustained increase in mRNAs for a putative vanadium chloroperoxidase and a peroxiredoxin may help prolong survival of C. reinhardtii during sulfur deprivation. Furthermore, many of the sulfur stress-regulated transcripts (encoding polypeptides associated with sulfate uptake and assimilation, oxidative stress, and photosynthetic function) are not properly regulated in the sac1 mutant of C. reinhardtii, a strain that dies much more rapidly than parental cells during sulfur deprivation. Interestingly, sulfur stress elicits dramatic changes in levels of transcripts encoding putative chloroplast-localized chaperones in the sac1 mutant but not in the parental strain. These results suggest various strategies used by photosynthetic organisms during acclimation to nutrient-limited growth. An all pairs experiment design type is where all labeled extracts are compared to every other labeled extract. Keywords: all_pairs
Project description:Bigelowiella natans is a marine chlorarachniophyte whose plastid was acquired secondarily via endosymbiosis with a green alga. Integrating a photosynthetic endosymbiont within the host metabolism on route to plastid evolution would require the acquisition of strategies for coping with changes in light intensity and modifications of host genes to appropriately respond to changes in photosynthetic metabolism. To investigate the transcriptional response to light intensity in chlorarachniophytes, we conducted an RNA-seq experiment to identify differentially-expressed genes following four-hour shift to high or very-low light. A shift to high light altered the expression of over 2000 genes, many involved with photosynthesis, primary metabolism, and reactive-oxygen scavenging. These changes are related to an attempt to optimize photosynthesis and increase energy sinks for excess reductant, while minimizing photo-oxidative stress. A transfer to very-low light resulted in a lower photosynthetic performance and metabolic alteration, reflecting an energy-limited state. Genes located on the nucleomorph, the vestigial nucleus in the plastid, had few changes in expression in either light treatment, indicating this organelle has relinquished most transcriptional control to the nucleus. Overall, during plastid origin, both host and transferred endosymbiont genes evolved a harmonized transcriptional network to respond to a classic photosynthetic stress.
Project description:We identified the Ubiquitin Ligase HERC1 in the context of cytarabine response in a genome-wide CRISPR screen in murine AML. We hypothesized to detect early transciptomic changes in cytarabine treated murine AML cells genetically targeted by using single guide RNAs targeting HERC1 and Non-targeting Control.
Project description:Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to adapt their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investigate the mechanisms of high light acclimation in Phaeodactylum tricornutum using an integrated approach involving global transcriptional profiling, metabolite profiling and variable fluorescence technique. Algae cultures were acclimated to low light (LL), after which the cultures were transferred to high light (HL). Molecular, metabolic and physiological responses were studied at time points 0.5 h, 3 h, 6 h, 12 h, 24 h and 48 h after transfer to HL conditions. The integrated results indicate that the acclimation mechanisms in diatoms can be divided into an initial response phase (0.5 h), an intermediate acclimation phase (3-12 h) and a late acclimation phase (12-48 h). The initial phase is recognized by strong and rapid regulation of genes encoding proteins involved in photosynthesis, pigment metabolism and reactive oxygen species (ROS) scavenging systems. A significant increase in light protecting metabolites occur together with the induction of transcriptional processes involved in protection of cellular structures at this early phase. During the following phases, the metabolite profiling display a pronounced decrease in light harvesting pigments, whereas the variable fluorescence measurements show that the photosynthetic capacity increases strongly during the late acclimation phase. We show that P. tricornutum is capable of swift and efficient execution of photoprotective mechanisms, followed by changes in the composition of the photosynthetic machinery that enable the diatoms to utilize the excess energy available in HL. Central molecular players in light protection and acclimation to high irradiances have been identified. The experiment was designed as a time series, with diatom cultures were harvested at time points 0.5 h, 3 h, 6 h, 12 h, 24 h and 48 h after transfer to high light conditions. The reference samples were kept at low light and harvested in parallel with the treated samples. Three biological replicates were harvested for all samples.
Project description:Ferroptosis is a new form of regulated, non-apoptotic cell death characterized by excessive lipid peroxidation upon loss of activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4). Sorafenib, an FDA-approved multi-kinase inhibitor drug for treatment of hepatocellular carcinoma (HCC), has been shown to induce ferroptosis. Protein phosphorylation changes upon Sorafenib treatment have been previously reported in patient studies and in cell culture however the early phosphorylation changes during induction of ferroptosis are not completely understood. This work highlights these changes through a time course from 7 to 60 min of Sorafenib treatment in SKHep1 cells to provide insight on the induction of ferroptosis. 6,186 unique phosphosites were quantified from 2,381 phosphoproteins in this study and phosphorylation changes occurred in as early as 30 minutes of Sorafenib treatment. By 60 minutes, significant changes in key regulatory pathways were identified, including sites from ferroptosis-related proteins, indicating the involvement of phospho-regulated signaling during ferroptosis induction.