Project description:This experiment assessed the natural gene expression variation present between colonies of the Indo-Pacific reef-building coral Acropora millepora, and additionally explored whether gene expression differed between two different intron haplotypes according to intron 4-500 in a carbonic anhydrase homolog. This study found no correspondence between host genotype and transcriptional state, but found significant intercolony variation, detecting 488 representing unique genes or 17% of the total genes analyzed. Such transcriptomic variation could be the basis upon which natural selection can act. Underlying variation could potentially allow reef corals to respond to different environments. Whether this source of variation and the genetic responses of corals and its symbionts will allow coral reefs to cope to the rapid pace of global change remains unknown.
Project description:This experiment assessed the natural gene expression variation present between colonies of the Indo-Pacific reef-building coral Acropora millepora, and additionally explored whether gene expression differed between two different intron haplotypes according to intron 4-500 in a carbonic anhydrase homolog. This study found no correspondence between host genotype and transcriptional state, but found significant intercolony variation, detecting 488 representing unique genes or 17% of the total genes analyzed. Such transcriptomic variation could be the basis upon which natural selection can act. Underlying variation could potentially allow reef corals to respond to different environments. Whether this source of variation and the genetic responses of corals and its symbionts will allow coral reefs to cope to the rapid pace of global change remains unknown. A. millepora colonies were brought to a common garden in the reef lagoon, i.e. under the same environmental conditions. This common garden combined with acclimatization removes environmental effects on the physiology of the coral colonies. For the comparison of the two intron haplotypes, we applied a multiple dye-swap microarray design for the two groups of coral colonies (N=3 per group) defined based on the two genotypes resolved with the use of intron 4-500 (Fig. 1). To also examine the intra-haplotype variation we added a loop design nested to the above multiple dye-swap design, where three samples per colony were included. Colonies 1, 2, and 3 are of intron 4-500 haplotype 1; colonies 4, 5, and 6 are haplotype 2.
Project description:Naval training exercises involving live ordnance can introduce munitions constituents (MCs) such as 1,3,5-trinitro-1,3,5 triazine (RDX) into the marine environment posing a potential environmental hazard to reef organisms, including corals. We developed a bioinformatic infrastructure and high-density microarray for a coral consortium and assessed the effects of RDX bioaccumulation on gene expression related to coral and endosymbiont health in the reef building coral (Acropora formosa). High-throughput sequencing and assembly of the transcriptomes for A. formosa and all eukaryotic endosymbionts yielded 189,616 unique sequences and 25,003 significant functional matches to protein-coding genes. Functional annotation and metabolic pathway associations were also developed. The bioinformatics base was transitioned to custom 15,000 probe microarrays that were used to assess RDX effects on gene expression in the A. formosa coral consortium. Coral fragments were exposed to RDX (0.5, 1, 2, 4, and 8 mg/L) for 5d in a controlled laboratory experiment. RDX readily accumulated into coral tissues; however, bioconcentration was minimal (bioconcentration factor = 1.09-1.50). RDX caused no significant changes in zooxanthellae tissue densities, however a significant (p<0.05) 40% increase in mucocytes was observed in the 8 mg/L exposure indicating a mucosal protective response to RDX exposure. Investigation of T-RFLP profiles indicated significant differences in bacterial community composition inhabiting the coral surface microlayer of Acropora sp. between control and RDX-exposed coral as among exposure concentrations. Differential expression of transcripts increased with increasing RDX concentration where 126, 195 and 272 transcripts were differentially expressed in the 0.5, 2.0 and 8 mg/L RDX treatments, respectively. The commonality in differentially expressed transcripts (DET) among exposure concentrations ranged from 9.9 to 29.0% where the lowest commonality was observed between the most disparate RDX exposure concentrations. Increasing RDX concentrations caused an increasing proportion of the number of transcripts differentially expressed in symbionts relative to corals. Further, a trend toward decreased transcript expression in symbionts in response to increasing RDX concentration was observed where 20.0% of differentially expressed transcripts had decreased expression at the 0.5 mg/L concentration, whereas 80.4% had decreased expression at the 8 mg/L concentration. Investigation of KEGG orthology for DET indicated potential impacts of RDX on a variety of molecular pathways, predominantly in endosymbionts compared to the coral host. Prominent effects of RDX exposure on pathways included enrichment of DET involved in carbohydrate metabolism, amino acid metabolism, energy metabolism, lipid metabolism, metabolism of cofactors and vitamins, environmental information processing and cellular processes. Fragments of the living branched coral Acropora formosa were obtained from Oceans, Reefs and Aquaria (http://www.orafarm.com). Ten gallon aquaria were used to expose 5 coral fragments to control or RDX exposure conditions (0.49, 0.93, 1.77, 3.67 and 7.18 mg/L, measured concentrations). The microarray hybridization experiment included 3 biological replicates for the 0.5, 2, and 8 mg/L RDX conditions and 4 biological replicates for the control.
Project description:The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations. To test the hypothesis that larval transcription profiles reflect population specific responses to thermal stress, symbiont-free gametes of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico and raised under normal and elevated temperatures. These populations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among thousands of genes were simultaneously characterized using microarrays, allowing investigation of gene expression patterns among wild populations under stressful environmental conditions. Results show site-specific signatures of gene expression in larvae of a reef-building coral from different parts of its range (despite low genetic divergence), and reveal both local and general components of stress response during later stages of larval development. These results provide evidence of site-specific variation in the face of gene flow, which may represent functional genetic variation in different subpopulations, and support the idea that coral host genomes may indeed house the adaptive potential needed to deal with changing environmental conditions.
Project description:The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations. To test the hypothesis that larval transcription profiles reflect population specific responses to thermal stress, symbiont-free gametes of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico and raised under normal and elevated temperatures. These populations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among thousands of genes were simultaneously characterized using microarrays, allowing investigation of gene expression patterns among wild populations under stressful environmental conditions. Results show site-specific signatures of gene expression in larvae of a reef-building coral from different parts of its range (despite low genetic divergence), and reveal both local and general components of stress response during later stages of larval development. These results provide evidence of site-specific variation in the face of gene flow, which may represent functional genetic variation in different subpopulations, and support the idea that coral host genomes may indeed house the adaptive potential needed to deal with changing environmental conditions. The experimental setup followed a reference design, i.e. all samples were hybridized against the same pool made up of equal amounts of RNA from all samples collected in Mexico. For samples from Mexico we used three technical replicates for each treatment temperature, for samples from Florida three biological replicates were used for each treatment temperature, except for the high temperature samples at day two where only two replicates were available due to high larval mortality at that temperature. Common reference samples were labeled with Cy3, temperature treatment samples with Cy5. Microarrays for M. faveolata contained 1,314 coding sequences, of which 43% had functional annotations as determined by homology to known genes.