Project description:This project aims to identify differences in metabolomic profiles among seven known, unique genotypes of the threatened staghorn coral Acropora cervicornis.
Project description:Publication Abstract: As climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes. Taking advantage of three coral restoration nurseries in Florida that serve as long-term common garden experiments, we exposed over thirty genetically distinct Acropora cervicornis colonies to hot and cold temperature shocks seasonally and measured pooled gene expression responses using RNAseq. Targeting a subset of twenty genes, we designed a high-throughput qPCR array to quantify expression in all individuals separately under each treatment with the goal of identifying predictive and/or diagnostic thermal stress biomarkers. We observed extensive transcriptional variation in the population, suggesting abundant raw material is available for adaptation via natural selection. However, this high variation made it difficult to correlate gene expression changes with colony performance metrics such as growth, mortality, and bleaching susceptibility. Nevertheless, we identified several promising diagnostic biomarkers for acute thermal stress that may improve coral restoration and climate change mitigation efforts in the future.