Project description:Per-and polyfluoroalkyl substances (PFAS) are a growing concern for humans, wildlife, and more broadly, ecosystem health. Previously, we characterised the microbial and biochemical impact of elevated PFAS on the gut microbiome of freshwater turtles (Emydura macquarii macquarii) within a contaminated catchment in Queensland, Australia. However, the understanding of PFAS impacts on this species and other aquatic organisms is still very limited, especially at the host-gut microbiome molecular interaction level. To this end, the present study aimed to apply these leading-edge omics technologies within an integrated framework that provides biological insight into the host turtle-turtle gut microbiome interactions of PFAS-impacted wild-caught freshwater turtles. For this purpose, faecal samples from PFAS-impacted turtles (n = 5) and suitable PFAS-free reference turtles (n = 5) were collected and analysed. Data from 16S rRNA gene amplicon sequencing and metabolomic profiling of the turtle faeces were integrated using MetOrigin to assign host, microbiome, and co-metabolism activities. Significant variation in microbial composition was observed between the two turtle groups. The PFAS-impacted turtles showed a higher relative abundance of Firmicutes and a lower relative abundance of Bacteroidota than the reference turtles. The faecal metabolome showed several metabolites and pathways significantly affected by PFAS exposure. Turtles exposed to PFAS displayed altered amino acid and butanoate metabolisms, as well as altered purine and pyrimidine metabolism. It is predicted from this study that PFAS-impacted both the metabolism of the host turtle and its gut microbiota which in turn has the potential to influence the host's physiology and health.
Project description:Rapid advancements in automated genomic technologies have uncovered many unique findings about the turtle genome and its associated features including olfactory gene expansions and duplications of toll-like receptors. However, despite the advent of large-scale sequencing, assembly, and annotation, about 40-50% of genes in eukaryotic genomes are left without functional annotation, severely limiting our knowledge of the biological information of genes. Additionally, these automated processes are prone to errors since draft genomes consist of several disconnected scaffolds whose order is unknown; erroneous draft assemblies may also be contaminated with foreign sequences and propagate to cause errors in annotation. Many of these automated annotations are thus incomplete and inaccurate, highlighting the need for functional annotation to link gene sequences to biological identity. In this study, we have functionally annotated two genes of the red-bellied short-neck turtle (Emydura subglobosa), a member of the relatively understudied pleurodire lineage of turtles. We improved upon initial ab initio gene predictions through homology-based evidence and generated refined consensus gene models. Through functional, localization, and structural analyses of the predicted proteins, we discovered conserved putative genes encoding mitochondrial proteins that play a role in C21-steroid hormone biosynthetic processes and fatty acid catabolism-both of which are distantly related by the tricarboxylic acid (TCA) cycle and share similar metabolic pathways. Overall, these findings further our knowledge about the genetic features underlying turtle physiology, morphology, and longevity, which have important implications for the treatment of human diseases and evolutionary studies.