Project description:Root traits are significant targets for breeding stress-resilient and high-yielding wheat genotypes under climatic fluctuations. However, root transcriptome analysis is usually obscured due to challenges in root research. We performed transcriptome analysis of thirty bread wheat cultivars using RNA-seq to investigate the diversity and expression of root system architecture (RSA) related transcripts. We examined the expression patterns of these transcripts in both root and leaf tissues and found that various transcripts are root-specific which could be manipulated for desirable root traits.The presented RNA-seq datasets provide valueable source for identification of genes involved in various biological processes under varying climatic conditions.
Project description:Abstract Background: Fusarium crown rot is major disease in wheat. However, the wheat defense mechanisms against this disease remain poorly understood. Results: Using tandem mass tag (TMT) quantitative proteomics, we evaluated a disease-susceptible (UC1110) and a disease-tolerant (PI610750) wheat cultivar inoculated with Fusarium pseudograminearum WZ-8A. The morphological and physiological results showed that the average root diameter and malondialdehyde content in the roots of PI610750 decreased 3 days post-inoculation (dpi), while the average number of root tips increased. Root vigor was significantly increased in both cultivars, indicating that the morphological, physiological, and biochemical responses of the roots to disease differed between the two cultivars. TMT analysis showed that 366 differentially expressed proteins (DEPs) were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment in the two comparison groups, UC1110_3dpi/UC1110_0dpi (163) and PI610750_3dpi/PI610750_0dpi (203). It may be concluded that phenylpropanoid biosynthesis (8), secondary metabolite biosynthesis (12), linolenic acid metabolites (5), glutathione metabolism (8), plant hormone signal transduction (3), MAPK signaling pathway-plant (4), and photosynthesis (12) contributed to the defense mechanisms in wheat. Protein-protein interaction network analysis showed that the DEPs interacted in both sugar metabolism and photosynthesis pathways. Sixteen genes were validated by real-time quantitative polymerase chain reaction and were found to be consistent with the proteomics data. Conclusion: The results provided insight into the molecular mechanisms of the interaction between wheat and F. pseudograminearum.
Project description:A comparative RNA-Seq analysis was done in root and shoot of Najran wheat cultivar between plants grown under two conditions: control (0 mM NaCl) and salt treatment (200 mM NaCl). The current study revealed differentially expressed genes and various associated biological pathways involved in plant responses to salt stress between the two conditions in the root and shoot plant tissues, providing important insights into the molecular mechanisms underlying salt tolerance in wheat.
Project description:The wheat gene Lr34 confers partial resistance to all races of Puccinia triticina, the causal agent of wheat leaf rust. However, the biological basis for the exceptional durability of Lr34 is unclear. The Affymetrix wheat genome array was used to identify wheat genes differentially expressed in a compatible interaction (Tc), an R-gene mediated incompatible interaction (Tc-Lr1), and a race non-specific resistance interaction (Tc-Lr34) in response to infection challenge by P. triticina race 1 at anthesis. Transcriptome interrogation was conducted by comparing mock- and P. triticina-inoculated leaves harvested at 3 and 7 days post inoculation (dpi). Keywords: Time course
Project description:Despite the broad use of single-cell and single-nucleus RNA sequencing in plant research, accurate cluster annotation in less studied plant species remains a major challenge due to the lack of validated marker genes. Here, using soil-grown wheat roots as a model, we generated a single-cell RNA-sequencing (scRNA-seq) atlas and annotated cluster identities in an unbiased way by transferring existing annotations from publicly available datasets in wheat, rice, maize and Arabidopsis. These cross-species orthology-based predictions were next validated using untargeted spatial transcriptomics. This information refined existing cluster annotations for different datasets across key plant model species. We then used the validated clusters to generate cell type-specific gene regulatory networks for root tissues of wheat and two other monocot crop species. By integrating all available data, including homeolog expression in wheat, we predicted reliable tissue-specific markers which are conserved across different species. In summary, we provided an annotated and validated single cell transcriptomic resource for soil-grown wheat root apical meristems and revealed conserved cell type-specific regulators and markers across species. These data expand upon previous root single cell atlas resources in crops, and will facilitate cell type annotation in non-model plant species in the future.
Project description:Despite the broad use of single-cell and single-nucleus RNA sequencing in plant research, accurate cluster annotation in less studied plant species remains a major challenge due to the lack of validated marker genes. Here, using soil-grown wheat roots as a model, we generated a single-cell RNA-sequencing (scRNA-seq) atlas and annotated cluster identities in an unbiased way by transferring existing annotations from publicly available datasets in wheat, rice, maize and Arabidopsis. These cross-species orthology-based predictions were next validated using untargeted spatial transcriptomics. This information refined existing cluster annotations for different datasets across key plant model species. We then used the validated clusters to generate cell type-specific gene regulatory networks for root tissues of wheat and two other monocot crop species. By integrating all available data, including homeolog expression in wheat, we predicted reliable tissue-specific markers which are conserved across different species. In summary, we provided an annotated and validated single cell transcriptomic resource for soil-grown wheat root apical meristems and revealed conserved cell type-specific regulators and markers across species. These data expand upon previous root single cell atlas resources in crops, and will facilitate cell type annotation in non-model plant species in the future.