Project description:This SuperSeries is composed of the following subset Series: GSE41194: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 1) GSE41196: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 2) GSE41197: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 3) GSE41198: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 4 stroma) GSE41227: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 4 Epithelial) Refer to individual Series
Project description:MiRNA profiling from whole blood (EDTA) was used to identify a miRNA profile applicable for early stage breast cancer detection In the study presented here, a consecutively collected, well-defined cohort of 48 patients with early stage breast cancer (invasive ductal carcinoma) at diagnosis was compared with a cohort of 57 healthy individuals for known homo sapiens miRNAs (mirbase 15).
Project description:Ductal carcinoma in situ (DCIS) is a precursor lesion that can give rise to invasive breast cancer (IBC). It has been proposed that both the nature of the lesion and the tumor microenvironment play key roles in progression to IBC. Here, laser capture microdissected tissue samples from epithelium and stroma in normal breast, pure DCIS, and pure IBC were employed to define key gene expression profiles associated with disease progression.
Project description:Mass spectrometry was utilized to analyze enriched, low abundance proteins from patient serum, in patients with invasive ductal carcinoma (IDC) breast cancer and controls with a positive mammogram and negative biospy. Proteins in each group were compared to identify IDC specific markers.
Project description:Ductal carcinoma in situ (DCIS) is a precursor lesion that can give rise to invasive breast cancer (IBC). It has been proposed that both the nature of the lesion and the tumor microenvironment play key roles in progression to IBC. Here, laser capture microdissected tissue samples from epithelium and stroma in normal breast, pure DCIS, and pure IBC were employed to define key gene expression profiles associated with disease progression. Tumor and matching stroma were profiled for 9 DCIS patients, 10 IBC patients, and 3 normal breast. Differential gene expression was evaluated for paired normal stroma versus normal epitelium samples, paired DCIS stroma versus DCIS epitelium samples, paired IBC stroma versus IBC epitelium, IBC stroma versus DCIS stroma, and IBC epithelium versus DCIS epithelium.
Project description:This is a matched-pair analysis of ductal carcinoma in situ (DCIS) and invasive component (IDC) of nine breast ductal carcinoma to identify novel molecular markers characterizing the transition from DCIS to IDC for a better understanding of its molecular biology. Keywords: Affymetrix-based Microarrays in Mamma carcinoma
Project description:Murine healthy tissue samples, DCIS and invasive mammary tumors were analyzed in order to identify marker genes which show enhanced expresssion in DCIS and invasive ductal carcinomas. Using this approach, we were able to identify a set of genes which might allow a better detection of DCIS and invasive carcinomas in the future. Samples consists of: 5 wild type breast tissue samples 5 healthy breast tissue sapmles of WAP-TNP8 mice 5 samples of mice one month, 5 samples of mice two month, 5 samples of mice three month, 5 samples of mice four month, and 5 samples of mice five month after activation of the SV40 oncogene 5 invasive tumors
Project description:Ductal carcinoma in situ (DCIS) is a non-invasive form of breast cancer where cells restricted to the ducts exhibit an atypical phenotype. Some DCIS lesions are believed to rapidly transit to invasive ductal carcinomas (IDCs), while others remain unchanged. Existing classification systems for DCIS fail to identify those lesions that transit to IDC. We studied gene expression patterns of 31 pure DCIS, 36 pure invasive cancers and 42 cases of mixed diagnosis (invasive cancer with an in situ component) using Agilent Whole Human Genome Oligo Microarrays 44k. Six normal breast tissue samples were also included as controls. qRT-PCR was used for validation. All DCIS and invasive samples could be classified into the intrinsic molecular subtypes defined for invasive breast cancer. Hierarchical clustering establishes that samples group by intrinsic subtype, and not by diagnosis. We observed heterogeneity in the transcriptomes among DCIS of high histological grade and identified a distinct subgroup containing seven of the 31 DCIS samples with gene expression characteristics more similar to advanced tumours. A set of genes independent of grade, ER-status and HER2-status was identified by logistic regression that univariately classified a sample as belonging to this distinct DCIS subgroup. qRT-PCR of single markers clearly separated this DCIS subgroup from the other DCIS, and contains samples from several histopathological and intrinsic molecular subtypes. The genes that differentiate between these two types of DCIS suggest several processes related to the re-organisation of the microenvironment. This raises interesting possibilities for identification of DCIS lesions both with and without invasive characteristics, which potentially could be used in clinical assessment of a woman's risk of progression, and lead to improved management that would avoid the current over- and under-treatment of patients. Breast cancer samples, 31 pure DCIS patients, 36 IDC patients, 42 mixed and 6 normal.
Project description:This is a matched-pair analysis of ductal carcinoma in situ (DCIS) and invasive component (IDC) of nine breast ductal carcinoma to identify novel molecular markers characterizing the transition from DCIS to IDC for a better understanding of its molecular biology.