Project description:Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized as progressive and irreversible fibrosis in the interstitium of lung tissues. There is still an unmet need to develop a novel therapeutic drug for IPF. We have previously demonstrated that periostin, a matricellular protein, plays an important role in the pathogenesis of pulmonary fibrosis. However, the underlying mechanism of how periostin causes pulmonary fibrosis remains unclear. In this study, we sought to see whether the cross-talk between transforming growth factor-b (TGF-b), a central mediator in the pathogenesis of pulmonary fibrosis, and periostin in lung fibroblasts leads to generation of pulmonary fibrosis and whether taking advantage of the cross-talk between TGF-b and periostin, inhibitors for integrin aVb3, a periostin receptor, can block pulmonary fibrosis in the model mice. We found that there exists a cross-talk between TGF-b and periostin signals via aVb3/b5 converging into Smad3. This cross-talk is important for expression of several downstream molecules of TGF-b including serpin family E member 1, CCN family member 2/connective tissue growth factor, insulin-like growth factor binding protein-3, and IL-11, all of which have been already shown to be important for pulmonary fibrosis. We, moreover, found several potent integrin inhibitors to block the cross-talking with TGF-b signals and CP4715, one of the compounds, improved bleomycin-induced pulmonary fibrosis in mice. These results suggest that the cross-talk between TGF-b and periostin can be targeted for pulmonary fibrosis and that CP4715 can be a potential therapeutic agent to block the cross-talk between TGF-b and periostin.
Project description:Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized as progressive and irreversible fibrosis in the interstitium of lung tissues. There is still an unmet need to develop a novel therapeutic drug for IPF. We have previously demonstrated that periostin, a matricellular protein, plays an important role in the pathogenesis of pulmonary fibrosis. However, the underlying mechanism of how periostin causes pulmonary fibrosis remains unclear. In this study, we sought to see whether the cross-talk between transforming growth factor-b (TGF-b), a central mediator in the pathogenesis of pulmonary fibrosis, and periostin in lung fibroblasts leads to generation of pulmonary fibrosis and whether taking advantage of the cross-talk between TGF-b and periostin, inhibitors for integrin aVb3, a periostin receptor, can block pulmonary fibrosis in the model mice. We found that there exists a cross-talk between TGF-b and periostin signals via aVb3/b5 converging into Smad3. This cross-talk is important for expression of several downstream molecules of TGF-b including serpin family E member 1, CCN family member 2/connective tissue growth factor, insulin-like growth factor binding protein-3, and IL-11, all of which have been already shown to be important for pulmonary fibrosis. We, moreover, found several potent integrin inhibitors to block the cross-talking with TGF-b signals and CP4715, one of the compounds, improved bleomycin-induced pulmonary fibrosis in mice. These results suggest that the cross-talk between TGF-b and periostin can be targeted for pulmonary fibrosis and that CP4715 can be a potential therapeutic agent to block the cross-talk between TGF-b and periostin.
Project description:Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized as progressive and irreversible fibrosis in the interstitium of lung tissues. There is still an unmet need to develop a novel therapeutic drug for IPF. We have previously demonstrated that periostin, a matricellular protein, plays an important role in the pathogenesis of pulmonary fibrosis. However, the underlying mechanism of how periostin causes pulmonary fibrosis remains unclear. In this study, we sought to learn whether the cross-talk between TGF-β (transforming growth factor-β), a central mediator in pulmonary fibrosis, and periostin in lung fibroblasts leads to generation of pulmonary fibrosis and whether inhibitors for integrin αVβ3, a periostin receptor, can block pulmonary fibrosis in model mice and the TGF-β signals in fibroblasts from patients with IPF. We found that cross-talk exists between TGF-β and periostin signals via αVβ3/β5 converging into Smad3. This cross-talk is necessary for the expression of TGF-β downstream effector molecules important for pulmonary fibrosis. Moreover, we identified several potent integrin low-molecular-weight inhibitors capable of blocking cross-talk with TGF-β signaling. One of the compounds, CP4715, attenuated bleomycin-induced pulmonary fibrosis in vivo in mice and the TGF-β signals in vitro in fibroblasts from patients with IPF. These results suggest that the cross-talk between TGF-β and periostin can be targeted for pulmonary fibrosis and that CP4715 can be a potential therapeutic agent to block this cross-talk.
Project description:We compared transcriptional differences between Periostin siRNA treated and GFP-siRNA treated in OP9 cells using Affymetrix mouse 430_2 array.
Project description:Pulmonary fibrosis (PF) is associated with many chronic lung diseases including Systemic sclerosis (SSc), Idiopathic Pulmonary Fibrosis (IPF) and Cystic Fibrosis (CF) which are characterized by the progressive accumulation of stromal cells and formation of scar tissue. Pulmonary fibrosis is a dysregulated response to alveolar injury which causes a progressive decline in lung function and refractory to current pharmacological therapies. Airway and alveolar epithelial cells and stromal cells contribute to pulmonary fibrosis but the cell-specific pathways and gene networks that are responsible for the pathophysiology are unknown. Recent animals models generated in our lab demonstrate clinical phenotypes seen in human fibrotic disease. The mouse model of transforming growth factor-? (TGF?)-induced fibrosis include conditionally expressing TGF? in the lung epithelium under control of the CCSP promoter driving rtTA expression (CCSP/TGF?). This allow the TGF? is only expressed in airway and alveolar epithelial cells and only when mice fed doxycycline (Dox). Similar to PF in humans, TGF? mice on Dox developed a progressive and extensive adventitial, interstitial and pleural fibrosis with a decline in lung mechanics. Thus, the TGF? transgenic mouse is a powerful model to determine lung cell-specific molecular signatures involved in pulmonary fibrosis. In this study, we sought to determine changes in the transcriptome during TGF?-induced pulmonary fibrosis. Our results showed that several pro-fibrotic genes increased in the lungs of TGF? mice. This study demonstrates that WT1 network gene changes associated with fibrosis and myfibroblast accumulation and thus may serve as a critical regulator fibrotic lung disease. mRNA profiles of CCSP/- and CCSP/TGFalpha mice treated with Dox
Project description:In this study, we demonstrated that baseline SOX11 expression was significantly higher in dermal fibroblasts (DFs) isolated from patients with SSc than that in controls, and increased in response to TGF-b. We then showed that SOX11 is involved in the expression of periostin and some periostin-dependent fibrotic factors identified in lung fibroblasts previously. Moreover, we identified some fibrotic factors induced by SOX11 in DNA microarrays combining TGF-b induction and SOX11 knockdown. Finally, we showed that genetic deletion of SOX11 in Postn positive fibroblast cells protects from bleomycin (BLM)-induced skin fibrosis. Altogether, our data indicate that SOX11 and periostin forms a vicious circle and that TGF-b activates this circle specifically in SSc dermal fibroblasts.
Project description:Periostin, a matricellular protein, has been reported to be important in supporting tumor cell dissemination. However, the molecular mechanisms underlying periostin function within the tumor microenvironment are poorly understood. In this study, we observe that loss of periostin decreases esophageal squamous cell carcinoma (ESCC) tumor growth in vivo and demonstrate that periostin cooperates with a conformational missense p53 mutation to enhance invasion. Pathway analyses reveal that invasive esophageal cells expressing periostin and p53R175H mutation display activation of signal transducer and activator of transcription 1 (STAT1) target genes, suggesting that the induction of STAT1 and STAT1-related genes could foster a permissive microenvironment that facilitates invasion of esophageal epithelial cells into the extracellular matrix (ECM). Genetic knockdown of STAT1 in transformed esophageal epithelial cells underscores the importance of STAT1 in promoting invasion and potentiate tumor resistance to genotoxic stress. Furthermore, we find that STAT1 is activated in ESCC xenograft tumors but this activation is attenuated with inducible knockdown of periostin in ESCC tumors. Overall, these results highlight the molecular mechanisms supporting the capacity of periostin in mediating tumor invasion during ESCC development. Pre-clinical study hTERT: EPC cells immortalized by expression of hTERT hTERT_p53: EPC cells expressing hTERT and mutant P53 hTERT_p53_POSTN: EPC cells expressing hTERT, mutant P53, and POSTN.