Project description:We provide the functional and epigenomic evidence for ERG binding to super-enhancers in HUVEC and further show that loss of ERG results in inhibition of specific endothelial super-enhancers and associated target genes.
Project description:We provide the functional and epigenomic evidence for ERG binding to super-enhancers in HUVEC and further show that loss of ERG results in inhibition of specific endothelial super-enhancers and associated target genes.
Project description:RationaleThe ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG's homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers).ObjectiveTo investigate whether ERG regulates endothelial-specific gene expression via super-enhancers.Methods and resultsChromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers.ConclusionsThe transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk.
Project description:Proinflammatory stimuli rapidly and globally remodel chromatin landscape, thereby enabling transcriptional responses. Yet, the mechanisms coupling chromatin regulators to the master regulatory inflammatory transcription factor NF-kB remain poorly understood. We report in human endothelial cells (ECs) that activated NF-kB binds to enhancers, provoking a rapid, global redistribution of BRD4 preferentially at super-enhancers, large enhancer domains highly bound by chromatin regulators. Newly established NF-kB super-enhancers drive nearby canonical inflammatory response genes. In both ECs and macrophages BET bromodomain inhibition prevents super-enhancer formation downstream of NF-kB activation, abrogating proinflammatory transcription. In TNFa-activated endothelium this culminates in functional suppression of leukocyte rolling, adhesion and transmigration. Sustained BET bromodomain inhibitor treatment of LDLr -/- animals suppresses atherogenesis, a disease process rooted in pathological vascular inflammation involving endothelium and macrophages. These data establish BET-bromodomains as key effectors of inflammatory response through their role in the dynamic, global reorganization of super-enhancers during NF-kB activation. Gene expression analysis of human endothelial cells in resting state, treatment with TNFalpha or TNFalpha with the BET bromodomain inhibitor JQ1
Project description:Proinflammatory stimuli rapidly and globally remodel chromatin landscape, thereby enabling transcriptional responses. Yet, the mechanisms coupling chromatin regulators to the master regulatory inflammatory transcription factor NF-kB remain poorly understood. We report in human endothelial cells (ECs) that activated NF-kB binds to enhancers, provoking a rapid, global redistribution of BRD4 preferentially at super-enhancers, large enhancer domains highly bound by chromatin regulators. Newly established NF-kB super-enhancers drive nearby canonical inflammatory response genes. In both ECs and macrophages BET bromodomain inhibition prevents super-enhancer formation downstream of NF-kB activation, abrogating proinflammatory transcription. In TNFa-activated endothelium this culminates in functional suppression of leukocyte rolling, adhesion and transmigration. Sustained BET bromodomain inhibitor treatment of LDLr -/- animals suppresses atherogenesis, a disease process rooted in pathological vascular inflammation involving endothelium and macrophages. These data establish BET-bromodomains as key effectors of inflammatory response through their role in the dynamic, global reorganization of super-enhancers during NF-kB activation. ChIP-Seq for various transcription factors, RNA Polymerase II, and histone modifications in human endothelial cells
Project description:Proinflammatory stimuli rapidly and globally remodel chromatin landscape, thereby enabling transcriptional responses. Yet, the mechanisms coupling chromatin regulators to the master regulatory inflammatory transcription factor NF-kB remain poorly understood. We report in human endothelial cells (ECs) that activated NF-kB binds to enhancers, provoking a rapid, global redistribution of BRD4 preferentially at super-enhancers, large enhancer domains highly bound by chromatin regulators. Newly established NF-kB super-enhancers drive nearby canonical inflammatory response genes. In both ECs and macrophages BET bromodomain inhibition prevents super-enhancer formation downstream of NF-kB activation, abrogating proinflammatory transcription. In TNFa-activated endothelium this culminates in functional suppression of leukocyte rolling, adhesion and transmigration. Sustained BET bromodomain inhibitor treatment of LDLr -/- animals suppresses atherogenesis, a disease process rooted in pathological vascular inflammation involving endothelium and macrophages. These data establish BET-bromodomains as key effectors of inflammatory response through their role in the dynamic, global reorganization of super-enhancers during NF-kB activation. Chem-Seq for the biotinylated small molecule JQ1 in untreated or TNFalpha treated human endothelial cells
Project description:Genome wide localization of SUMO1 and SUMO2/3 proteins revealed an asscociation of SUMO proetins with active chromatin. SUMO proteins are enriched at super enhancers and enhancers and SUMOylation regulates a subset of these super enhancers. Super enhancers regulated by SUMOylation were enriched for transcription factor TFAP2C and SUMOylation negatively regulates TFAP2C localization to enhancers and super enhancers. Proteomics and ChIP-PCR at MYC SE suggests that chromatin bound TFAP2C recruits histone deacetylation complexes that increases upon SAE2 knockdown. Conversely, SUMOylation promoted TFAP2C asscociation with pre-mRNA splicing machinery components. Taken together, our study revealed a critical role of SUMOylation in chromatin modification through an AP-2 family of transcription factor, TFAP2C and a potential role of TFAP2C in pre-mRNA splicing.
Project description:Genome wide localization of SUMO1 and SUMO2/3 proteins revealed an asscociation of SUMO proetins with active chromatin. SUMO proteins are enriched at super enhancers and enhancers and SUMOylation regulates a subset of these super enhancers. Super enhancers regulated by SUMOylation were enriched for transcription factor TFAP2C and SUMOylation negatively regulates TFAP2C localization to enhancers and super enhancers. Proteomics and ChIP-PCR at MYC SE suggests that chromatin bound TFAP2C recruits histone deacetylation complexes that increases upon SAE2 knockdown. Conversely, SUMOylation promoted TFAP2C asscociation with pre-mRNA splicing machinery components. Taken together, our study revealed a critical role of SUMOylation in chromatin modification through an AP-2 family of transcription factor, TFAP2C and a potential role of TFAP2C in pre-mRNA splicing.