Project description:To characterize breed-specific difference among four Korean native chicken breeds and White Leghorn, we measured their transcriptomes at liver tissue using Affymetrix Chicken gene 1.0 ST array platform.
2015-12-31 | GSE63389 | GEO
Project description:Whole genome sequencing analysis of Korean native chicken
Project description:Anim Genet. 2009 Feb;40(1):115-8. Epub 2008 Oct 17. Differentially expressed transcripts in adipose tissue between Korean native pig and Yorkshire breeds. Moon JK, Kim KS, Kim JJ, Choi BH, Cho BW, Kim TH, Lee CK. Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul, South Korea. We measured and compared the transcripts of adipose tissue from Korean native pig (KNP) and Yorkshire (YS) breeds to investigate breed-specific transcription changes. We employed both the Affymetrix porcine genome array and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We found eight genes showing significant changes between the two breeds. Based on a literature review, these genes were indicative of differences in extracellular structure density and differences in the potential to metabolize xenobiotic chemicals and lipids. The differentially expressed genes indicated that KNP has a lower extracellular structure density and a lower potential to metabolize xenobiotic chemicals than YS. PMID: 18945290
Project description:The coat color of mammals is determined by the melanogenesis pathway, which is responsible for maintaining the balance between black-brown eumelanin and yellow-reddish phaeomelanin. It is also believed that the color of the bovine nose is regulated in a similar manner; however, the molecular mechanism underlying pigment deposition in the black nose has yet to be elucidated. The aim of the present study was to identify melanogenesis-associated genes that are differentially expressed in the black vs. yellow nose of native Korean cows. Experiment, Yellow nose vs. Black nose HanWoo
Project description:Tuberculosis-associated Immune Reconstitution Inflammatory Syndrome (TB-IRIS) is a common complication in HIV-TB coinfected patients receiving combined antiretroviral therapy (cART). While monocytes/macrophages play major roles in both HIV- and TB-infection individually, a putative contribution of monocytes to the development of TB-IRIS remains unexamined. To investigate the possible functional contribution of monocytes to TB-IRIS pathogenesis, one of our first steps was to apply a genome-wide microarray analysis in monocytes of HIV-TB co-infected patients shortly after cART initiation. Based on the coparison of gene profiles between the TB-IRIS group and the control group, the modulated genes and pathways will be further investigated.