Project description:Podosphaera xanthii is the main causal agent of powdery mildew (PM) disease for Cucurbita pepo. Disease control is attained principally by applications of chemical fungicides, along with parallel use of tolerant crop varieties and alternate application of elicitors to control development of disease resistance. To get insight into C. pepo molecular responses to P. xanthii infection and elicitor treatment we studied the proteomic profile differences at the phyllosphere of a zucchini cultivar susceptible to PM, at the onset of P. xanthii (PX) infection and after application of Reynoutria sachalinensis (RS) plant extract, respectively, using a nano-LC-HRMS/MS, Q-Exactive-Orbitrap approach. Analysis of peptide sequences regarding four treatment groups (Control; PX; RS; and RSPX (PX-infected priorly treated with RS)) resulted in 2070 CuGenDB annotations. Three comparisons (treatments vs Control) encompassed most of the Differentially Expressed Proteins (DEPs). In these three comparisons, KEGG and Gene Ontology functional analyses highlighted unique differentially enriched pathways -some of which including highly expressed proteins- in PX-related (Proteasome, Pentose phosphate pathway, and Carbon fixation), RS-related (Biosynthesis of Secondary metabolites, Flavonoids, and Starch and Sucrose metabolism), and RSPX-related (Pyruvate metabolism and Polycomb repressive complex) comparisons respectively, suggesting distinct mechanisms of early plant responses modulated by PX and RS. Furthermore, in four out of six comparisons the Thiamine metabolism pathway was found to be enriched, suggesting a pivotal role in PX-induced responses.
Project description:BackgroundPowdery mildew diseases are a major phytosanitary issue causing important yield and economic losses in agronomic, horticultural and ornamental crops. Powdery mildew fungi are obligate biotrophic parasites unable to grow on culture media, a fact that has significantly limited their genetic manipulation. In this work, we report a protocol based on the electroporation of fungal conidia, for the transient transformation of Podosphaera fusca (synonym Podosphaera xanthii), the main causal agent of cucurbit powdery mildew.ResultsTo introduce DNA into P. xanthii conidia, we applied two square-wave pulses of 1.7 kV for 1 ms with an interval of 5 s. We tested these conditions with several plasmids bearing as selective markers hygromycin B resistance (hph), carbendazim resistance (TUB2) or GFP (gfp) under control of endogenous regulatory elements from Aspergillus nidulans, Neurospora crassa or P. xanthii to drive their expression. An in planta selection procedure using the MBC fungicide carbendazim permitted the propagation of transformants onto zucchini cotyledons and avoided the phytotoxicity associated with hygromycin B.ConclusionThis is the first report on the transformation of P. xanthii and the transformation of powdery mildew fungi using electroporation. Although the transformants are transient, this represents a feasible method for the genetic manipulation of this important group of plant pathogens.