Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression.
Project description:Organisms adapt to and survive in environments with varying nutrient availability. Cis-regulatory changes play important roles in adaptation and phenotypic evolution. To what extent cis-regulatory elements contribute to metabolic adaptation is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, that survives in nutrient rich surface and nutrient deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide analysis of accessible chromatin and histone modifications in the liver tissue of one surface and two independently derived cave populations, providing the first genome-wide epigenetic landscape in this organism. We find that many cis-regulatory elements differ between surface and the cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. Changes in gene regulatory networks between the surface and cave morphotypes point to global changes in key metabolic pathways.
Project description:Organisms adapt to and survive in environments with varying nutrient availability. Cis-regulatory changes play important roles in adaptation and phenotypic evolution. To what extent cis-regulatory elements contribute to metabolic adaptation is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, that survives in nutrient rich surface and nutrient deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide analysis of accessible chromatin and histone modifications in the liver tissue of one surface and two independently derived cave populations, providing the first genome-wide epigenetic landscape in this organism. We find that many cis-regulatory elements differ between surface and the cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. Changes in gene regulatory networks between the surface and cave morphotypes point to global changes in key metabolic pathways.
Project description:Transcriptional profiling of the bacteria Paenibacillus vortex comparing control untreated cells with kanamycin treated cells after 18 hours of exposure. Goal was to determine the effect of the antibiotic kanamycin in concentration which affect the colony morphology on global bacteria gene expression. Two-condition experiment, control cells vs. kanamycin treated cells. Biological replicates: 2 control replicates, 2 treated replicates. Pooling of 5 technical replicates for each biological replicate.
Project description:Paenibacillus polymyxa is an agriculturally important plant growth promoting rhizobacterium (PGPR). Many Paenibacillus species are known to be engaged in complex bacteria-bacteria and bacteria-host interactions, which in other bacteria were shown to necessitate quorum sensing communication, but to date no quorum sensing systems have been described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems comprises a pro-peptide that is secreted to the growth medium and further processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides to the medium leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.
Project description:Organisms adapt to and survive in environments with varying nutrient availability. Cis-regulatory changes play important roles in adaptation and phenotypic evolution. To what extent cis-regulatory elements contribute to metabolic adaptation is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, that survives in nutrient rich surface and nutrient deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide analysis of accessible chromatin and histone modifications in the liver tissue of one surface and two independently derived cave populations, providing the first genome-wide epigenetic landscape in this organism. In parallel, we performed RNA Seq as a read out of gene expression. We find that many cis-regulatory elements differ between surface and the cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. Changes in gene regulatory networks between the surface and cave morphotypes point to global changes in key metabolic pathways.
Project description:we report a transcriptome-wide comparative investigation between surface and cave species in Sinocyclocheilus. De novo transcriptome assemblies were performed on surface and cave species; then the Sinocyclocheilus contigs were annotated with Gene Ontology. RNA-Seq assays revealed reduced transcription of a series of visual phototransduction and retinal disease related genes in cave-dwelling species compared with surface species. Degeneration of the retina in Sinocyclocheilus cavefish might occur in a lens-independent way by the down-regulation of several transcriptional factors, which have direct roles in retina development and maintenance, such as crx, rorb and Wnt pathway members. Examination of 2 different eye samples in 2 Sinocyclocheilus species.
Project description:An archaeological bone fragment from Baishiya Karst Cave, China, was identified as stemming from a hominin through ZooMS (Zooarchaeology by Mass Spectrometry). Shotgun palaeoproteomic analyses were thereafter conducted on the specimen to refine the taxonomic identification and perform phylogenetic analyses. The reconstruted proteome shows that the newly described Baishiya Karst Cave individual, Xiahe 2, is most closely related to the high-coverage published genome from a Denisovan individual.