Project description:We reported a kind of new haploid embryonic stem cell, human haploid androgenetic embryonic stem cell, which kept the sperm characteristic epigenetic modification patterns for imprinting genes. In this study, two human haploid androgenetic embryonic stem cell lines (ha-AGHESC) and two human haploid parthenogenetic embryonic stem cell lines (ha-PGHESC) with somatic control and diploid HESC control, were processed with RNA-sequencing (RNA-seq) and whole genome bisulfite sequencing (WGBS). We showed that the reconstructed semi-clone HESCs were similar to the diploid HESC in transcriptome and the methylome especially related to the known human imprinting genes. The raw data of WGBS and bulk RNA-seq are deposited at Genome Sequence Archive (GSA) of Human with accession number HRA004100.
Project description:Production of viable and fertile mice have been reported by nuclear replacement, however, the reasons behind the frequent deformations among foetuses and progeny are not well understood. Activation and in vitro culture methods are also important. Origin of the nuclear donor cells affects success rates, and their survival in culture varies. It has been reported that offspring of nuclear replacement parental mice were normal and fertile. All epigenetic problems in the parents seem to be erased when cell nuclei go through the germ line. cDNA microarray analysis compared expression patterns of Dll1 ko versus Dll1 ko NT (NT = nuclear transfer) and wt versus wt NT of liver and spleen. The aim of this study was analysis of possible epigenetic effects by cloning in the offspring of the 3rd generation. If the 3rd generation cloned animals are indeed phenotypically equivalent to conventional transgenic mouse models then this would open the possibility to develop novel techniques of genetic engineering based on somatic gene targeting and nuclear replacement. four male animals of each cohort (Dll1 conventional transgenic mouse, Dll1 nuclear transfer mouse, wildtype, wildtye nuclear transfer mouse). Two technical replicates including a colour flip experiment. For each analysed organ (liver, spleen) eight experiments including four biological replicates. As reference RNA pools were used
Project description:Individual zona free in vitro grown bovine day 7 blastocysts were compared to stage and quality matched nuclear transfer derived blastocysts (fibroblast donor cells).
Project description:Reprogramming occurs after nuclear transfer into zygotes whose genome was removed in mitosis, but not after nuclear transfer into zygotes enucleated in interphase Egli et al. Development 2010 doi:10.1242/dev.046151 Groups of 20 mouse embryos were used for the analysis. RNA amplification was done using Illumina total prep RNA amplification kit. Total of 21 arrays.
Project description:Reprogramming occurs after nuclear transfer into zygotes whose genome was removed in mitosis, but not after nuclear transfer into zygotes enucleated in interphase Egli et al. Development 2010 doi:10.1242/dev.046151
Project description:Reprogramming occurs after nuclear transfer into zygotes whose genomes have been removed in mitosis, but not after nuclear transfer into zygotes enucleated in interphase. Our results suggest that there is a previously unappreciated barrier to successful human nuclear transfer, and that future studies should focus on the requirements for somatic genome activation.
Project description:Although somatic cell nuclear transfer (SCNT) cloning is more efficient in bovine than in all other species tested so far, there is a high rate of pregnancy failure that has been linked to structural and functional abnormalities of the placenta. We tested the hypothesis that these changes may originate from disturbed embryo-maternal interactions in the pre-implantation period. Therefore, we evaluated the transcriptome response of the endometrium to SCNT embryos (produced from five different donor cell cultures) as compared to embryos derived from in vitro fertilization (IVF). SCNT embryos and IVF embryos were cultured under identical conditions to the blastocyst stage (Day 8) and transferred to recipients. The recipients were slaughtered at day 18 of pregnancy and the uterus was recovered. Pregnancy was verified by the presence of at least one normally developed embryo. Transcriptome profiling of endometrium samples using a custom cDNA microarray covering transcripts expressed in the endometrium and/or oviduct epithelium revealed 58 transcripts that were differently abundant between endometrium samples from SCNT vs. IVF pregnancies. Prominent examples are NR2F2 (encoding the orphan nuclear receptor COUP-TFII) and GJA1 (encoding connexin 43). Both transcripts are known to play important roles in placentation and were significantly less abundant in endometrium from SCNT vs. IVF pregnancies. These findings suggest that placental failure in bovine clone pregnancies may originate from abnormal embryo-maternal communication already in the pre- or peri-implantation period. Endometrium transcriptome profiles may serve as a novel readout to evaluate SCNT embryos for their ability to induce pregnancy with a functional placenta. Keywords: response to different embryos Nineteen German Fleckvieh (Simmental) heifers were slaughtered at day 18 of pregnancy. Cycle-synchronized recipient heifers received either IVP or SCNT embryos at day 7 of the estrous cycle. Animals were slaughtered at day 18. Endometrial (intercaruncular) tissue samples were obtained from 10 pregnant animals after transfer of IVP embryos and from 9 pregnant animals after transfer of SCNT embryos.
Project description:Reprogramming occurs after nuclear transfer into zygotes whose genomes have been removed in mitosis, but not after nuclear transfer into zygotes enucleated in interphase. Our results suggest that there is a previously unappreciated barrier to successful human nuclear transfer, and that future studies should focus on the requirements for somatic genome activation. 1-3 embryos were used for analysis. RNA amplification was done using two or three rounds of T7-mediated RNA amplification using the Illumina Total Prep RNA Amplification kit. Somatic cells 1-000 and 1-011 required only one round of RNA amplification because starting amounts of RNA were 100-500ng, while embryonic samples were amplified from single cells or embryos.