Project description:The goal of this study was to characterize a single-cell clone derived from bovine rumen epithelium. Analyses including RNA-seq demonstrated that this clone was derived from a rumen epithelial cell. This clone is named BREC1 in the manuscript.
Project description:A healthy rumen is crucial for normal growth and improved production performance of ruminant animals. Rumen microbes participate in and regulate rumen epithelial function, and the diverse metabolites produced by rumen microbes are important participants in rumen microbe-host interactions. SCFAs, as metabolites of rumen microbes, have been widely studied, and propionate and butyrate have been proven to promote rumen epithelial cell proliferation. Succinate, as an intermediate metabolite in the citric acid cycle, is a final product in the metabolism of certain rumen microbes, and is also an intermediate product in the microbial synthesis pathway of propionate. However, its effect on rumen microbes and rumen epithelial function has not been studied. It is unclear whether succinate can stimulate rumen epithelial development. Therefore, in this experiment, Chinese Tan sheep were used as experimental animals to conduct a comprehensive analysis of the rumen microbiota community structure and rumen epithelial transcriptome, to explore the role of adding succinate to the diet in the interaction between the rumen microbiota and host.
Project description:This study identifies key microbiome and epithelial cell subtypes involved in grass digestion and VFA metabolism in the rumen. By integrating multi-omic data, we reveal novel links between microbial activity, epithelial cell function, and grassland foraging, providing critical insights into mechanisms underlying grass prevalence and their implications for optimizing ruminant health and productivity. This research enhances our understanding of the grass-microbiome- rumen axis and its role in sustainable grazing systems.
Project description:SARST-V1 method was used to asses the effect of live yeast on the microbial population of the rumen of cows fed an acidogenic diet 3 cows were used in 3 by 3 latin-square design with 3 periods. In each period animals received either 0.5g/d of yeast, 5g/d of yeast or none. Rumen microbiota was analysed using the SARST-V1 method for each period.
Project description:Metaproteomic analysis of an enriched anaerobic rumen consortium (ERAC) using sugarcane bagasse and rumen as unique carbon and microbial sources