Project description:Enhancing phosphorus removal of photogranules by incorporating polyphosphate accumulating organisms
| PRJEB54716 | ENA
Project description:Formation and granulation mechanism of granular sludge dominated by denitrifying glycogen-accumulating organisms
| PRJNA985882 | ENA
Project description:Microplastics enhance the denitrification of glycogen-accumulating organisms by regulating electronic transport in carbon-nitrogen coupling
| PRJNA1217938 | ENA
Project description:Identification of denitrifying phosphate accumulating organisms
Project description:<p><strong>INTRODUCTION:</strong> The extraction solvent mixtures were optimized for untargeted metabolomics analysis of microbial communities from two laboratory scale activated sludge reactors performing enhanced biological phosphorus removal (EBPR).</p><p><strong>OBJECTIVE:</strong> To develop a robust and simple analytical protocol to analyse microbial metabolomics from EBPR bioreactors.</p><p><strong>METHODS:</strong> Extra- and intra-cellular metabolites were extracted using five methods and analysed by ultraperformance liquid chromatography mass spectrometry (UPLC-MS).</p><p><strong>RESULTS:</strong> The optimal extraction method was biomass specific and methanol:water (1:1 v/v) and methanol:chloroform:water (2:2:1 v/v) were chosen, respectively, for each of the two different bioreactors.</p><p><strong>CONCLUSION:</strong> Our approach provides direct surveys of the metabolic state of PAO-enriched EBPR communities, showing that extraction methods should be carefully tailored to the microbial community under study</p>
Project description:Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures. Characterization of microbial communities at the genomic, transcriptomic, proteomic and metabolomic levels, with a special interest on lipid accumulating bacterial populations, which are naturally enriched in biological wastewater treatment systems and may be harnessed for the conversion of mixed lipid substrates (wastewater) into biodiesel. The project aims to elucidate the genetic blueprints and the functional relevance of specific populations within the community. It focuses on within-population genetic and functional heterogeneity, trying to understand how fine-scale variations contribute to differing lipid accumulating phenotypes. Insights from this project will contribute to the understanding the functioning of microbial ecosystems, and improve optimization and modeling strategies for current and future biological wastewater treatment processes. This project contains datasets derived from the same biological wastewater treatment plant. The data includes metagenomes, metatranscriptomes, metaproteomes and organisms isolated in pure cultures.