Project description:The data presented is intended to analyse the changes in the expression profiles of human MSCs (Mesenchymal Stromal/Stem Cells) associated to different tissue specific stimulus.
Project description:Cellular therapy is proposed for tendinopathy treatment. Bone marrow- (BM-MSC) and adipose tissue- (ASC-) derived mesenchymal stromal cells are candidate populations for such a therapy. We used microarrays to evaluate the basal gene expression in human BM-MSCs and ASCs and to create list of differentially expressed genes between analyzed groups.
Project description:The data presented is intended to analyse the changes in the expression profiles of human MSCs (Mesenchymal Stromal/Stem Cells) associated to different tissue specific stimulus. Human BM-, PL-, and AD- MSCs, and skin fibroblasts from healthy independent donors were isolated and expanded in vitro. Hematopoietic progenitors and stem cells (HSCs) were isolated applying CD34+ immunomagnetic selection.
Project description:This SuperSeries is composed of the following subset Series: GSE30064: Cultured human amniotic fluid-derived mesenchymal stromal cells [PIQOR data] GSE30065: Cultured human amniotic fluid-derived mesenchymal stromal cells [miRXplore data] Refer to individual Series
Project description:Metabolomics and lipidomics workflows were used to analyze Mesenchymal stromal cell (MSC) metabolites. Metabolite abundances were used to model MSC potency results in IDO and T-cell proliferation assays.
Project description:Human mesenchymal stromal cells (MSCs) were treated with TLR3 ligand. LS-MS/MS analysis was performed to reveal changes in proteins related to the immunosuppressive properties of MSCs and to better understand the mechanisms underlying the activation of these properties.
Project description:Despite their key role in immunity our understanding of primary and secondary lymphoid stromal cell heterogeneity and ontogeny remains limited. Here, using genome-wide expression profiling and phenotypic and localization studies, we identify a functionally distinct subset of BP3-PDPN+PDGFRβ+/α+CD34+ stromal adventitial cells in both lymph nodes and thymus that is located within the perivascular niche surrounding PDPN-PDGFRβ+/α-Esam-1+ITGA7+ pericytes. In re-aggregate organ grafts adult CD34+ adventitial cells gave rise to multiple thymic and lymph node mesenchymal subsets including pericytes, FRC-, MRC- and FDC-like cells, the development of which was lymphoid environment dependent. During thymic ontogeny pericytes developed from a transient population of BP3-PDPN+PDGFRβ+/α+CD34-/lo anlage-seeding progenitors that subsequently up-regulated CD34 and we provide evidence suggesting that similar embryonic progenitors give rise to lymph node mesenchymal subsets. These findings extend the current understanding of lymphoid mesenchymal cell heterogeneity and highlight a role of the CD34+ vascular adventitia as a potential ubiquitous source of lymphoid stromal precursors in postnatal tissues. To comprehensively study the differences and similarities between mesenchymal stromal subsets in the thymus and lymph nodes, global gene expression analysis was performed on sorted PDPN-, BP-3-PDPN+ and BP-3+PDPN+ PDGFRb+ lymph node mesenchymal cells (LNMC) as well as PDPN- and BP-3-PDPN+ PDGFRb+ thymic mesenchymal cells (TMC) from 2 w old mice by microarray. Total RNA was prepared from TMC and LNMC (pooled inguinal, brachial and axillary LN) subsets sorted from 3 (TMC) and 10-11 (LNMC) 2 weeks old mice per experiment. Isolated RNA from 3 individual experiments was amplified and prepared for hybridization to the Affymetrix Mouse Gene 1.1 ST Array at a genomics core facility: Center of Excellence for Fluorescent Bioanalytics (KFB, University of Regensburg, Germany)
Project description:Limbal stromal cells were reported to resemble mesenchymal stem cells (MSCs) with multipotential differentiation cability. However, little is known about their gene expression profiles compared to MSC derived from various sources. In this study, the gene expression profile of limbal stromal cells was compared to bone marrow, adipose stromal cells and foreskin fibroblasts. In addition, we also explored the gene expression changes of ex vivo expanded limbal stromal cells when cultured in two different systems. Expanded limbal stromal cells were divided into two groups; each cultured separately on a matrigel-coated plate in DMEM/F12 medium supplemented with bFGF and LIF and the other on a normal plate in DMEM medium supplemented with 10% fetal bovine serum (FBS). Cryopreserved bone marrow mesenchymal cells, adipose stromal cells and foreskin fibroblasts were cultured-expanded until confluent. Total RNA was extracted from all the samples and subjected to microarray experiments with an Agilent platform by using Human GE 8x60k microarrays. Data analysis was carried out with GeneSpring software. A total of 871 genes were upregulated when the limbal stromal cells were cultured in the matrigel system, whereas 58 genes were consistently differentially expressed in limbal stromal cells compared to other lineages. Besides the long intergenic non-coding RNA and unknown genes, these genes represent gene ontology for cellular components, molecular function and biological process. Samples derived from the same source were closely clustered by Hierachical clustering analysis. The limbal stromal cells have a distinct molecular signature compared to MSCs from other lineages. The culture system affected the gene expression profile of limbal stromal cells tremendously. Derived limbal stromal cells were cultured using two different methods, one with matrigel and the other with FBS. Their gene expression profiles were compared. The gene expression profile of limbal stromal cells that were cultured with FBS also was compared to the gene expression profiles of bone marrow mesenchymal stem cells, adipose stromal cells and foreskin fibroblasts.