Project description:Phytoplasmas are prokaryotic plant pathogens that cause considerable loss in many economically important crops, and an increasing number of phytoplasma diseases are being reported on new hosts. Knowledge of plant defense mechanisms against such pathogens should help to improve strategies for controlling these diseases. Salicylic acid (SA)-mediated defense may play an important role in defense against phytoplasmas. Here, we report that SA accumulated in Madagascar periwinkle (Catharanthus roseus) infected with periwinkle leaf yellowing (PLY) phytoplasma. CrPR1a expression was induced in both symptomatic and non-symptomatic tissues of plants exhibiting PLY. NPR1 plays a central role in SA signaling, and two NPR1 homologs, CrNPR1 and CrNPR3, were identified from a periwinkle transcriptome database. Similar to CrPR1a, CrNPR1 expression was also induced in both symptomatic and non-symptomatic tissues of plants exhibiting PLY. Silencing of CrNPR1, but not CrNPR3, significantly repressed CrPR1a induction in Tobacco rattle virus-infected periwinkle plants. In addition, symptoms of PLY progressed fastest in CrNPR1-silenced plants and slowest in CrNPR3-silenced plants. Consistently, expression of CrNPR1, but not CrNPR3, was induced by phytoplasma infection as well as SA treatment. This study highlights the importance of NPR1- and SA-mediated defense against phytoplasma in periwinkle and offers insight into plant-phytoplasma interactions to improve disease control strategies.
Project description:Transcriptional profiling of Vitis vinifera cv. Chardonnay healthy vs. Phytoplasma-infected plants (Bois noir phytoplasma). Study was conducted on grapevine plants grown in the same vineyard (leaf midribs were sampled). Keywords: disease state analysis
Project description:The degree of yellowing in tobacco leaves is an important indicator for determining the maturity and harvesting time of tobacco leaves. Reduction in chlorophyll is of utility for promoting the concentrated maturation of tobacco leaves and achieving mechanised harvesting and mining, and utilising tobacco yellow leaf regulatory genes is of great significance for the selection and breeding of tobacco varieties suitable for mechanised harvesting and the resolution of the molecular mechanisms controlling leaf colouration. In this study, the phenotypes of the yellow-leaf K326 and K326 varieties were analysed, and it was observed that the yellow-leaf K326 variety exhibited a distinct yellow leaf phenotype with a significant reduction in chlorophyll content. Subsequently, using a combination of BSA-seq, transcriptomic sequencing (RNA-seq), and proteomic sequencing approaches, we identified the candidate gene Nitab4.5_0008674g0010 that encodes dihydroneopterin aldolase as a factor associated with tobacco leaf yellowing. Finally, by measuring the folate content in K326 and Huangye K326, the folate content in Huangye K326 was observed to be significantly lower than that in K326, thus indicating that folate synthesis plays a crucial role in phenotypic changes in tobacco yellow leaves. This study is the first to use BSA-seq combined with RNA-seq and proteomic sequencing to identify candidate genes in tobacco yellow leaves. The results provide a theoretical basis for the analysis of the mechanism of tobacco yellow leaf mutations.
Project description:Transcriptional profiling of Vitis vinifera cv. Chardonnay healthy vs. Phytoplasma-infected plants (Bois noir phytoplasma). Study was conducted on grapevine plants grown in the same vineyard (leaf midribs were sampled). Keywords: disease state analysis Two-condition experiment: healthy vs. infected plants/shoots. Biological replicates: 4 healthy, 4 infected. No replicates. Each sample was prepared as a pool of several samples (each sample was collected from a different shoots/plants) of the same disease status. Each sample was co-hybridized to a common reference cRNA (pool of all samples).
Project description:The periwinkle leaf yellowing (PLY) disease was first reported in Taiwan in 2005. This disease was caused by an uncultivated bacterium in the genus "Candidatus phytoplasma." In subsequent years, this bacterium was linked to other plant diseases and caused losses in agriculture. For genomic investigation of this bacterium and its relatives, we conducted whole genome sequencing of a PLY phytoplasma from an infected periwinkle collected in Taoyuan. The de novo genome assembly produced eight contigs with a total length of 824,596 bp. The annotation contains 775 protein-coding genes, 63 pseudogenes, 32 tRNA genes, and two sets of rRNA operons. To characterize the genomic diversity across populations, a second strain that infects green onions in Yilan was collected for re-sequencing analysis. Comparison between these two strains identified 337 sequence polymorphisms and 10 structural variations. The metabolic pathway analysis indicated that the PLY phytoplasma genome contains two regions with highly conserved gene composition for carbohydrate metabolism. Intriguingly, each region contains several pseudogenes and the remaining functional genes in these two regions complement each other, suggesting a case of duplication followed by differential gene losses. Comparative analysis with other available phytoplasma genomes indicated that this PLY phytoplasma belongs to the 16SrI-B subgroup in the genus, with "Candidatus Phytoplasma asteris" that causes the onion yellowing (OY) disease in Japan as the closest known relative. For characterized effectors that these bacteria use to manipulate their plant hosts, the PLY phytoplasma has homologs for SAP11, SAP54/PHYL1, and TENGU. For genome structure comparison, we found that potential mobile unit (PMU) insertions may be the main factor that drives genome rearrangements in these bacteria. A total of 10 PMU-like regions were found in the PLY phytoplasma genome. Two of these PMUs were found to harbor one SAP11 homolog each, with one more similar to the 16SrI-B type and the other more similar to the 16SrI-A type, suggesting possible horizontal transfer. Taken together, this work provided a first look into population genomics of the PLY phytoplasmas in Taiwan, as well as identified several evolutionary processes that contributed to the genetic diversification of these plant-pathogenic bacteria.
Project description:Transcriptional profiling of phytoplasma grown in plant (Chrysanthemum coronarium) and grown in insect (Macrosteles striifrons). Two-condition experiment, phytoplasma-infected plant and phytoplasma-infected insect. Biological replicates: 6 phytoplasma-infected plants and 6 phytoplasma-infected insects, independently grown and harvested. One replicate per array.