Project description:63 samples were profiled in replicates on Affymetrix microarrays and using a custom RNASeq panel. The samples were randomly split in a training and validation cohort. SET ER/PR was calculated and a linear model was trained and validated to reproduce values obtained by microarray using RNASeq. In addition, the microarray replicates were used to validate the technical reproducibility of SET ER/PR.
Project description:There is clinical need to predict sensitivity of metastatic hormone receptor-positive and HER2-negative (HR+/HER2-) breast cancer to endocrine therapy, and targeted RNA sequencing (RNAseq) offers diagnostic potential to measure both transcriptional activity and functional mutation. We developed the SET ER/PR index to measure gene expression microarray probe sets that were correlated with hormone receptors (ESR1 and PGR) and robust to pre-analytical and analytical influences. We tested SET ER/PR index in biopsies of metastastic HR+/HER2- breast cancer against the treatment outcomes in 140 patients. Then we customized the SETER/PR assay to measure 18 informative, 10 reference transcripts, and sequence the ligand binding domain (LBD) of ESR1 using droplet-based targeted RNAseq, and tested that in residual RNA from 53 patients. Higher SET ER/PR index in metastatic samples predicted longer progression-free (PFS) and overall survival (OS) when patients received endocrine therapy as next treatment, even after adjustment for clinical-pathologic risk factors (PFS: HR 0.534, 95% CI 0.299 to 0.955, p = 0.035; OS: HR 0.315, 95% CI 0.157 to 0.631, p = 0.001). Mutated ESR1 LBD was detected in 8/53 (15%) of metastases, involving 1% to 98% of ESR1 transcripts (all had high SETER/PR index). A signature based on probe sets with good pre-analytical and analytical performance facilitated our customization of an accurate targeted RNAseq assay to measure both phenotype and genotype of ER-related transcription. Elevated SET ER/PR was associated with prolonged sensitivity to endocrine therapy in patients with metastatic HR+/HER2- breast cancer, especially in the absence of mutated ESR1 transcript. We tested SET ER/PR index in biopsies of metastastic HR+/HER2- breast cancer against the treatment outcomes in 140 patients. Then we customized the SET ER/PR assay to measure 18 informative, 10 reference transcripts, and sequence the ligand binding domain (LBD) of ESR1 using droplet-based targeted RNAseq, and tested that in residual RNA from 53 patients. Higher SET ER/PR index in metastatic samples predicted longer progression-free (PFS) and overall survival (OS) when patients received endocrine therapy as next treatment, even after adjustment for clinical-pathologic risk factors (PFS: HR 0.485, 95% CI 0.265 to 0.889, p = 0.019; OS: HR 0.314, 95% CI 0.155 to 0.637, p = 0.001). Mutated ESR1 LBD was detected in 8/53 (15%) of metastases, involving 1% to 98% of ESR1 transcripts (all had high SET ER/PR index). A signature based on probe sets with good pre-analytical and analytical performance facilitated our customization of an accurate targeted RNAseq assay to measure both phenotype and genotype of ER-related transcription. Elevated SET ER/PR was associated with prolonged sensitivity to endocrine therapy in patients with metastatic HR+/HER2- breast cancer, especially in the absence of mutated ESR1 transcript.
Project description:The goal of this study is to analyse whether ER-/PR+ breast tumors could be transcriptionally different from ER+/PR+ and/or from triple negative breast tumors
Project description:Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR dictates distinct ER and PR chromatin binding and differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Genomic analyses of the two PR isoforms, PRA and PRB, indicate that these isoforms bind distinct genomic sites and interact with different sets of co-regulators to differentially modulate gene expression as well as pro- or anti-tumorigenic phenotypes. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Of note, the two isoforms reprogrammed estrogen activity to be either pro or anti-tumorigenic. In concordance to the in-vitro observations, differential gene expression was observed in PRA and PRB-rich patient tumors and importantly, PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. This differential of better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher anti-tumor activity of combination therapies of tamoxifen with PR antagonists and modulators. Knowledge of various determinants of PR action and their interactions with estrogen signaling to differentially modulate breast cancer biology should serve as a guide to the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic.
Project description:Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and importantly, PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. This better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher anti-tumor activity of combination therapies of tamoxifen with PR antagonists and modulators. The study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist) from unique isoform and ligand-specific effects will guide the development of biomarkers for patient selection and translation of PR-targeted therapies to the clinic.
Project description:Exploring effect of progesterone/progestin treatment on ER and PR binding. Two cell lines, three conditions (Full Media with E2, E2+ Progesterone, Full Media + R5020 Progestin), three factors (ER, PR, p300), all with three replicates, each with a matched Input control.
Project description:Exploring effect of estrogen and progesterone/progestin treatment on ER and PR binding. Two cell lines, four conditions (Vehicle, E2, Progesterone, E2+Progesterone), three factors (ER, PR, p300), all with three replicates.