Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.
Project description:Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.
Project description:Many, if not all, bacteria use quorum sensing (QS) to control gene expression and collective behaviours, and more recently QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or “listen in” on the host’s communication processes, in order to switch between lytic and lysogenic modes of infection. In this project, we studied the interaction of Vibrio cholerae, the causative agent of cholera disease, with the lysogenic vibriophage VP882. The lytic cycle of VP882 is induced by the QS molecule DPO (3,5-dimethylpyrazin-2-ol), however, the global regulatory consequences of DPO-mediated VP882 activation have remained unclear. Using a combination of transcriptomic, genetic, and biochemical approaches, we discovered that induction of VP882 results in binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompete and down-regulate host-derived Hfq-dependent small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs and we demonstrate that one of these sRNAs, named VpdS, modulates the expression of multiple host and phage mRNAs through a base-pairing mechanism and thereby promotes phage replication. We further show that host-derived sRNAs can affect phage replication by interfering with the translation of phage mRNAs and thus might be part of the phage defence arsenal of the host. Taken together, our data draw a complex picture of post-transcriptional interactions occurring between host- and phage-derived transcripts that together determine the phage-mediated lysis program.
Project description:Many, if not all, bacteria use quorum sensing (QS) to control gene expression and collective behaviours, and more recently QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or “listen in” on the host’s communication processes, in order to switch between lytic and lysogenic modes of infection. In this project, we studied the interaction of Vibrio cholerae, the causative agent of cholera disease, with the lysogenic vibriophage VP882. The lytic cycle of VP882 is induced by the QS molecule DPO (3,5-dimethylpyrazin-2-ol), however, the global regulatory consequences of DPO-mediated VP882 activation have remained unclear. Using a combination of transcriptomic, genetic, and biochemical approaches, we discovered that induction of VP882 results in binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompete and down-regulate host-derived Hfq-dependent small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs and we demonstrate that one of these sRNAs, named VpdS, modulates the expression of multiple host and phage mRNAs through a base-pairing mechanism and thereby promotes phage replication. We further show that host-derived sRNAs can affect phage replication by interfering with the translation of phage mRNAs and thus might be part of the phage defence arsenal of the host. Taken together, our data draw a complex picture of post-transcriptional interactions occurring between host- and phage-derived transcripts that together determine the phage-mediated lysis program.