Project description:Inappropriate glucagon secretion deteriorates glycemic control in type 1 and type 2 diabetes. While insulin is known to regulate glucagon secretion via its receptor in alpha cells, the role of downstream proteins and signaling pathways underlying the actions of insulin are not fully defined. Using in vivo (knockout) and in vitro (knockdown) studies targeting insulin receptor substrate (IRS) proteins, we compared the relative roles of IRS1 versus IRS2 in regulating alpha cell function. Alpha cell-specific IRS1 knock out (alpha IRS1KO) mice exhibit glucose intolerance and inappropriate glucagon suppression during glucose-tolerance tests. In contrast, alpha cell-specific IRS2 knock outs (alpha IRS2KO) manifest normal glucose tolerance and suppression of glucagon secretion after glucose administration. Alpha cell lines with stable knockdown of IRS1 (alpha IRS1KD) are unable to repress glucagon mRNA expression and exhibit reduction in phosphorylation of AKT. However, glucagon mRNA expression was suppressed in response to insulin stimulation in a stable IRS2 knock down alpha cell line (alpha IRS2KD). Alpha IRS1KD cells also display suppressed global protein translation including glucagon, impaired cytoplasmic Ca2+ response and mitochondrial function. These data argue for IRS1 as a dominant regulator of pancreatic alpha cell function.
Project description:The liver plays a central role in whole-body lipid and glucose homeostasis. Increasing dietary fat intake results in increased hepatic fat deposition, which is associated with a risk for development of insulin resistance and type 2 diabetes. In this study, we demonstrate a role for the phosphate inorganic transporter 1 (PiT1/SLC20A1) in regulating metabolism. Specific knockout of Pit1 in hepatocytes significantly improved glucose tolerance and insulin sensitivity, enhanced insulin signalling, and decreased hepatic lipogenesis. We identified USP7 as a PiT1 binding partner and demonstrated that Pit1 deletion inhibited USP7/IRS1 dissociation upon insulin stimulation. This prevented IRS1 ubiquitination and its subsequent proteasomal degradation. As a consequence delayed insulin negative feedback loop and sustained insulin signalling were observed. Moreover, PiT1-deficient mice were protected against high fat diet-induced obesity and diabetes. Our findings indicate that PiT1 has potential as a therapeutic target in the context of metabolic syndrome, obesity, and diabetes.
Project description:The effect of liver specific deletion of the insulin receptor substrate-1 (Irs1) and/or Irs2 upon gene expression in the fasted and fed liver of mice; and the effect of liver specific Foxo1 deletion in the Irs1 and Irs2 knockout liver during fasting and feeding.
Project description:We used a Cre-loxP approach to generate mice with varied expression of hepatic Irs1 and Irs2 to establish the contribution of each protein to hepatic nutrient homeostasis. While nutrient-sensitive transcripts were expressed nearly normally in liver lacking Irs2 (LKO2 mice), these transcripts were significantly dysregulated in liver lacking Irs1 (LKO1 mice) or Irs1 and Irs2 together (DKO mice). Similarly, a set of key gluconeogenic and lipogenic genes was regulated nearly normally by feeding in liver retaining a single Irs1 allele without Irs2 (DKO/1 mice) but was poorly regulated in liver retaining one Irs2 allele without Irs1 (DKO/2 mice). DKO/2 mice, but not DKO/1 mice, also showed impaired glucose tolerance and insulin sensitivity-though both Irs1 and Irs2 were required to suppress hepatic glucose production during hyperinsulinemic-euglycemic clamp. In contrast, either hepatic Irs1 or Irs2 mediated suppression of HGP by intracerebroventricular insulin infusion. After 12 weeks on a high-fat diet, postprandial tyrosine phosphorylation of Irs1 increased in livers of control and LKO2 mice, whereas tyrosine phosphorylation of Irs2 decreased in control and LKO1 mice. Moreover, LKO1 mice -- but not LKO2 mice -- that were fed a high-fat diet developed postprandial hyperglycemia. We conclude that Irs1 is the principal mediator of hepatic insulin action that maintains glucose homeostasis.
Project description:Estrogen improves insulin sensitivity and increases energy expenditure, contributing to sexual dimorphism regarding type 2 diabetes mellitus (T2DM) susceptibility. Estrogen receptor α (ERα) plays a crucial role in mediating estrogen action on glucose and energy homeostasis. However, the underlying mechanisms remain incompletely understood. Here, we found a ligand-independent effect of ERα on the regulation of glucose homeostasis and identified an ERα-derived peptide as a potential insulin sensitizer. Deficiency of ERα but not ERβ in the liver impaired glucose homeostasis in male, female, and ovariectomized (OVX) female mice. Mechanistic studies revealed that ERα promoted hepatic insulin sensitivity by suppressing ubiquitination-induced IRS1 degradation. The ERα 1-280 domain mediated the ligand-independent effect of ERα on insulin sensitivity. Furthermore, we designed a peptide based on ERα 1-280 domain and found that ERα-derived peptide interacted with IRS1, increased IRS1 stability through suppressing its ubiquitination, and enhanced insulin sensitivity. Importantly, administration of ERα-derived peptide into obese mice significantly increased insulin sensitivity, attenuated glucose intolerance, and improved serum lipid profiles. These findings pave the way for the therapeutic intervention of T2DM by targeting the ligand-independent effect of ERα and indicate that ERα-derived peptide is a potential insulin sensitizer for the treatment of T2DM.
Project description:Dysregulated glucagon secretion deteriorates glycemic control in type 1 and type 2 diabetes. Although insulin is known to regulate glucagon secretion via its cognate receptor (insulin receptor, INSR) in pancreatic alpha cells, the role of downstream proteins and signaling pathways underlying insulin's activities are not fully defined. Using in vivo (knockout) and in vitro (knockdown) studies targeting insulin receptor substrate (IRS) proteins, we compared the relative roles of IRS1 and IRS2 in regulating alpha cell function. Alpha cell-specific IRS1-knockout mice exhibited glucose intolerance and inappropriate glucagon suppression during glucose tolerance tests. In contrast, alpha cell-specific IRS2-knockout animals manifested normal glucose tolerance and suppression of glucagon secretion after glucose administration. Alpha cell lines with stable IRS1 knockdown could not repress glucagon mRNA expression and exhibited a reduction in phosphorylation of AKT Ser/Thr kinase (AKT, at Ser-473 and Thr-308). AlphaIRS1KD cells also displayed suppressed global protein translation, including reduced glucagon expression, impaired cytoplasmic Ca2+ response, and mitochondrial dysfunction. This was supported by the identification of novel IRS1-specific downstream target genes, Trpc3 and Cartpt, that are associated with glucagon regulation in alpha cells. These results provide evidence that IRS1, rather than IRS2, is a dominant regulator of pancreatic alpha cell function.