Project description:FoxM1 activates genes that regulate S-G2-M cell-cycle progression and, when overexpressed, is associated with poor clinical outcome in multiple cancers. Here we identify FoxM1 as a tumor suppressor in mice that, through its N-terminal domain, binds to and inhibits Ect2 to limit the activity of RhoA GTPase and its effector mDia1, a catalyst of cortical actin nucleation. FoxM1 insufficiency impedes centrosome movement through excessive cortical actin polymerization, thereby causing the formation of non-perpendicular mitotic spindles that missegregate chromosomes and drive tumorigenesis in mice. Importantly, low FOXM1 expression correlates with RhoA GTPase hyperactivity in multiple human cancer types, indicating that suppression of the newly discovered Ect2-RhoA-mDia1 oncogenic axis by FoxM1 is clinically relevant. Furthermore, by dissecting the domain requirements through which FoxM1 inhibits Ect2 GEF activity, we provide mechanistic insight for the development of pharmacological approaches that target protumorigenic RhoA activity.
Project description:FoxM1 activates genes that regulate S-G2-M cell-cycle progression and, when overexpressed, is associated with poor clinical outcome in multiple cancers. Here we identify FoxM1 as a tumor suppressor in mice that, through its N-terminal domain, binds to and inhibits Ect2 to limit the activity of RhoA GTPase and its effector mDia1, a catalyst of cortical actin nucleation. FoxM1 insufficiency impedes centrosome movement through excessive cortical actin polymerization, thereby causing the formation of non-perpendicular mitotic spindles that missegregate chromosomes and drive tumorigenesis in mice. Importantly, low FOXM1 expression correlates with RhoA GTPase hyperactivity in multiple human cancer types, indicating that suppression of the newly discovered Ect2-RhoAmDia1 oncogenic axis by FoxM1 is clinically relevant. Furthermore, by dissecting the domain requirements through which FoxM1 inhibits Ect2 GEF activity, we provide mechanistic insight for the development of pharmacological approaches that target protumorigenic RhoA activity.
Project description:In order to analyze the difference in the whole gene expression profile of ESCC(esophageal squamous cell carcinoma) and normal adjecent esophageal tissue as well as cancer metastasis tissue. We found that ECT2 (Epithelial cell transformation sequence 2) is highly expressed in esophageal squamous cell carcinoma compared with adjacent normal tissues by microarray analysis, and we further analyzed the expression of ECT2 in 40 patients by qRT-PCR, and found that ECT2 is indeed high in cancer tissues. Expressed in normal tissues adjacent to cancer. We first confirmed the overexpression of ECT2 in ESCC, further confirming the signaling pathway in the oncogenisis of ESCC.
Project description:Epithelial Cell Transforming Sequence 2 (ECT2), a guanine nucleotide exchange factor (GEF) for Rho GTPases, is overexpressed in many cancers and is involved in signal transduction pathways that promote cancer cell proliferation, invasion and tumorigenesis. Recently, we demonstrated that a significant pool of ECT2 localizes to the nucleolus of non small cell lung cancer (NSCLC) cells where it binds the transcription factor Upstream Binding Factor 1 (UBF1) on the promoter regions of the ribosomal DNA (rDNA) and activates rDNA transcription, transformed growth and tumor formation. Here we investigate the mechanism by which ECT2 engages UBF1 on rDNA. Mutagenesis of ECT2 demonstrates that the tandem BRCT domain of ECT2 mediates binding to UBF1. Biochemical and mass spectrometry analysis reveals that Protein Kinase Ci (PKCi) directly phosphorylates UBF1 at Ser412 to generate a phosphopeptide binding epitope that binds the ECT2 BRCT domain. Lentiviral shRNA knockdown and reconstitution experiments demonstrate that both a functional ECT2 BRCT domain and the UBF1 Ser412 phosphorylation site are required for UBF1 mediated ECT2 recruitment to rDNA, elevated rRNA synthesis and transformed growth. Taken together, our study provides new molecular insight into ECT2 mediated regulation of rDNA transcription in cancer cells and provides a rationale for therapeutic targeting of UBF1 and ECT2 stimulated rDNA transcription for the treatment of NSCLC.
Project description:Aims: Cardiac fibroblasts (CFs) play a crucial role in cardiac remodelling, which is a common cause of heart failure (HF). However, the molecular mechanisms underlying the fibroblast-to-myofibroblast transition remain largely unknown. Foxm1 is well known in various cardiopulmonary pathologies. However, Foxm1-driven CF activation in the progression of cardiac remodelling to HF remains to be investigated. Methods: Changes in Foxm1 expression were assessed in samples from patients with HF and mice with transverse aortic constriction (TAC)-induced cardiac remodelling. Pharmacologic antagonist FDI-6 was used to explore the effects of Foxm1 inhibition on post-TAC outcomes. Tcf21-Cre and PostnMCM were used to evaluate Foxm1 loss- and gain-of-function in CFs and myofibroblasts, respectively. Cardiac function and remodelling were examined by echocardiography and histological analysis. Foxm1 downstream target genes were identified by mass spectrometry (MS) and transcriptomic analysis. Post-translational regulation was evaluated by in vitro chromatin immunoprecipitation, co-immunoprecipitation, and ubiquitination assays. Pharmacological inhibition of Usp10 or knockout of p38γ in vivo verified the signalling pathway by which Foxm1 regulated cardiac remodelling. Results: Foxm1 was upregulated in human HF samples as well as in the mouse cardiac remodelling model. CFs were the primary cell type responsible for Foxm1 upregulation. Foxm1 pharmacological inhibition or genetic knockout in CFs or myofibroblasts significantly attenuated TAC-induced cardiac remodelling and HF. Conversely, conditional overexpression of Foxm1 in CFs or myofibroblasts resulted in more severe pathological cardiac remodelling and dysfunction. Combined RNA-sequencing and MS analysis revealed that Foxm1 promoted Usp10 expression by binding to its promoter. Usp10 interacted with p38γ, resulting in p38γ deubiquitination and thus influencing the downstream p38 mitogen-activated protein kinase (MAPK) signalling pathway. Pharmacological inhibition of Usp10 or genetic knockout of p38γ ameliorated the exacerbated TAC-induced cardiac remodelling in mice with myofibroblast-specific Foxm1 overexpression. Conclusion: Our findings reveal an essential role of Foxm1 in CF activation during cardiac remodelling. These results suggest that targeting the Foxm1/Usp10/p38γ MAPK axis may represent a new potential therapeutic strategy against pathological cardiac remodelling and HF.
Project description:Aims: Cardiac fibroblasts (CFs) play a crucial role in cardiac remodelling, which is a common cause of heart failure (HF). However, the molecular mechanisms underlying the fibroblast-to-myofibroblast transition remain largely unknown. Foxm1 is well known in various cardiopulmonary pathologies. However, Foxm1-driven CF activation in the progression of cardiac remodelling to HF remains to be investigated. Methods: Changes in Foxm1 expression were assessed in samples from patients with HF and mice with transverse aortic constriction (TAC)-induced cardiac remodelling. Pharmacologic antagonist FDI-6 was used to explore the effects of Foxm1 inhibition on post-TAC outcomes. Tcf21-Cre and PostnMCM were used to evaluate Foxm1 loss- and gain-of-function in CFs and myofibroblasts, respectively. Cardiac function and remodelling were examined by echocardiography and histological analysis. Foxm1 downstream target genes were identified by mass spectrometry (MS) and transcriptomic analysis. Post-translational regulation was evaluated by in vitro chromatin immunoprecipitation, co-immunoprecipitation, and ubiquitination assays. Pharmacological inhibition of Usp10 or knockout of p38γ in vivo verified the signalling pathway by which Foxm1 regulated cardiac remodelling. Results: Foxm1 was upregulated in human HF samples as well as in the mouse cardiac remodelling model. CFs were the primary cell type responsible for Foxm1 upregulation. Foxm1 pharmacological inhibition or genetic knockout in CFs or myofibroblasts significantly attenuated TAC-induced cardiac remodelling and HF. Conversely, conditional overexpression of Foxm1 in CFs or myofibroblasts resulted in more severe pathological cardiac remodelling and dysfunction. Combined RNA-sequencing and MS analysis revealed that Foxm1 promoted Usp10 expression by binding to its promoter. Usp10 interacted with p38γ, resulting in p38γ deubiquitination and thus influencing the downstream p38 mitogen-activated protein kinase (MAPK) signalling pathway. Pharmacological inhibition of Usp10 or genetic knockout of p38γ ameliorated the exacerbated TAC-induced cardiac remodelling in mice with myofibroblast-specific Foxm1 overexpression. Conclusion: Our findings reveal an essential role of Foxm1 in CF activation during cardiac remodelling. These results suggest that targeting the Foxm1/Usp10/p38γ MAPK axis may represent a new potential therapeutic strategy against pathological cardiac remodelling and HF.
Project description:Rho family small GTPases serve as molecular switches in the regulation of diverse cellular functions including actin cytoskeleton remodeling, cell migration, gene transcription, and cell proliferation. Importantly, Rho overexpression is frequently seen in many carcinomas. However, published studies have almost invariably utilized immortal or tumorigenic cell lines to study Rho GTPase functions and there are no studies on the potential of Rho small GTPase to overcome senescence checkpoints and induce preneoplastic transformation of human mammary epithelial cells (hMECs). We found that ectopic expression of wild-type RhoA as well as a constitutively-active RhoA mutant (G14V) in primary hMEC strains led to their immortalization and preneoplastic transformation. Significantly, RhoA-T37A mutant, known to be incapable of interacting with many well known Rho-effectors ,was also capable of immortalizing hMECs.Our results demonstrate that RhoA can induce the preneoplastic transformation of hMECs by altering multiple pathways linked cellular transformation and breast cancer. Through microarray analysis, we want to identify genes and pathways linked to RhoA induced hMECs immortalization. Experiment Overall Design: 4 samples, in triplicate analyses per sample.
Project description:FOXM1 is a key transcription factor regulating cell cycle progression, DNA damage response, and a host of other hallmark cancer features, but the role of the FOXM1 cistrome in driving estrogen receptor-positive (ER+) vs. ER- breast cancer clinical outcomes remains undefined. Chromatin immunoprecipitation sequencing (ChIP-Seq) coupled with RNA sequencing (RNA-Seq) analyses was used to identify FOXM1 target genes in breast cancer cells (MCF-7) where FOXM1 expression was either induced by cell proliferation or repressed by p53 upregulation.
Project description:FOXM1 is a key transcription factor regulating cell cycle progression, DNA damage response, and a host of other hallmark cancer features, but the role of the FOXM1 cistrome in driving estrogen receptor-positive (ER+) vs. ER- breast cancer clinical outcomes remains undefined. Chromatin immunoprecipitation sequencing (ChIP-Seq) coupled with RNA sequencing (RNA-Seq) analyses was used to identify FOXM1 target genes in breast cancer cells (MCF-7) where FOXM1 expression was either induced by cell proliferation or repressed by p53 upregulation.