Project description:Total DNA was extracted from saliva and stool of the patients, amplified to collect amplicons of variable V3–V4 regions of the bacterial 16s rRNA gene and sequenced with MiSeq (2x300bp) Illumina platform.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:In this study, small RNAs were isolated from individual donations of eight forensically relevant biological fluids (blood, semen, vaginal fluid, menstrual blood, saliva, urine, feces, and perspiration) and subjected to next generation sequencing using the Illumina® Hi-Seq platform. Sequencing reads were aligned and annotated against miRbase release 21, resulting in a list of miRNAs and their relative expression levels for each sample analyzed. Body fluids with high bacterial loads (vaginal fluid, saliva, and feces) yielded relatively low annotated miRNA counts, likely due to oversaturation of small RNAs from the endogenous bacteria. Both body-fluid specific and potential normalization miRNAs were identified for further analysis as potential body fluid identification tools for each body fluid. 32 samples - 3-5 replicates of each human biological fluid: venous blood, urine, semen (normal and vasectomized), vaginal secretions, menstrual secretions, perspiration, feces, saliva
Project description:A three-stage continuous fermentative system was developed to simulate and control physicochemical factors of the gut biology. Inoculation was of each reactor was performed from a human fecal sample which was initially amplified with a batch procedure. Samples from the initial feces, the batch and from the bioreactors media were collected to extract bacterial DNA. 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 5 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either the initial stool, the batch inoculum or fermentative medium different compartments of the simulated colon (Proximal, Transversal and Distal). Each probe (4441) was synthetized in three replicates.