Project description:Analysis of gene expression profiling in osteotropic Lewis Lung carcinoma cells. The osteotropic lung cancer cell sublines were established throuth in vivo selection. The gene expression profiling of parental and osteotropic sublines was identified through microarray analysis.
Project description:Chronic obstructive pulmonary disease (COPD) is an independent risk factor for lung cancer, suggesting that COPD stroma favors cancer initiation. Therefore, we used proteomics and polysome-profiling to identify gene expression programs that distinguish stroma of patients harboring lung cancer from those that do not, with varied COPD severities. This profiling unveiled distinct COPD-dependent cancer-associated gene expression programs predominantly manifesting as alterations in mRNA translation. Mechanistically, such programs are downstream of the mammalian target of rapamycin pathway in mild COPD and pathological extracellular matrix in more severe COPD; and both programs parallel activation of distinct pro-cancer fibroblast-derived secretomes. Therefore, depending upon COPD severity, the lung stroma can exist in two states favoring cancer initiation, which likely result in distinct disease entities.
Project description:Mouse models of cancer recapitulate many of the molecular and biological features of the human disease. We sought to exploit these experimental merits in a systematic comparative proteomics search for circulating proteins associated with lung tumor development. In-depth quantitative proteomics was applied to plasmas from three mouse models of lung adenocarcinoma driven by mutant EGFR or Kras or induced by urethane exposure and a mouse model of small cell lung cancer driven by loss of Trp53 and Rb. To further refine our lung cancer-specific and broad carcinoma signatures, we intersected these lung cancer proteome profiles with those from other well-established mouse models of pancreatic, ovarian, colon, prostate and breast cancer, as well as two mouse models of inflammation. A set of proteins regulated by Titf1/Nkx2-1, a master transcription factor in cells from the peripheral airways and a known lineage-survival oncogene in lung cancer was identified in plasmas of mouse models of lung adenocarcinoma. An EGFR network of proteins was discerned in the plasma of mice with lung tumors driven by a mutant human EGFR. Levels of these proteins returned toward baseline upon treatment with a tyrosine kinase inhibitor. Moreover, a distinct plasma signature was uncovered in the Trp53/Rb mutant small cell lung cancer model that included a set of proteins associated with neuroendocrine development. Our studies have identified novel plasma protein signatures among molecularly or histopathologically defined lung cancer subtypes.
Project description:Mechanisms of resistance and sensitivity to the multi-targeted kinase inhibitor dasatinib are unknown. We previously found that lung cancer cells with kinase-inactivating BRAF mutations are sensitive to dasatinib and undergo senescence whereas cells with wild type BRAF are resistant. To better understand mechanisms underlaying the differential sensitivity of lung cancer cells to dasatinib, we performed gene expression profiling of lung cancer cells with (sensitive) and without (resistant) kinase-inactivating BRAF mutations
Project description:Profiling of freshly isolated mouse lung cancer LLC- and mouse breast cancer 4T1- derived leptomeningeal metastatic cancer cells from different anatomical locations