Project description:Animal microRNAs (which lack 2'-O-methyl modification) can be broken down at the terminal nucleotide by oxidation, while plant microRNAs (with 2'-O-methyl modification) are not affected. To gain additional sight into the role of SIDT1 in exogenous plant microRNAs absorption, we profiled oxidized smalll RNAs of liver from SIDT1 deficient mice and their wild type couterparts.
Project description:Lysosome-enriched fractions from the liver of Cln8 KO mice and WT mice. Included are four datasets: 1. Lysosome-enriched fraction from the liver of Cln8 KO mice, replicate 1 (CLN8_KO_1). 2. Lysosome-enriched fraction from the liver of Cln8 KO mice, replicate 2 (CLN8_KO_2). 3. Lysosome-enriched fraction from the liver of WT mice, replicate 1 (WT_1). 4. Lysosome-enriched fraction from the liver of WT mice, replicate 2 (WT_2).
Project description:Fenofibrate is a specific agonist of the nuclear receptor PPARa. To identify the gene expression under the strict dependence of hepatic PPARa activity, we generated a new mouse strain of PPARa-specific deletion in hepatocyte (albumin-Cre+/- Pparaflox/flox or LKO) and we compared them to total Ppara KO (KO), wild-type (WT) and liver WT (albumin-Cre-/- Pparaflox/flox or LWT) mice. We used microarrays to detail the global programme of gene expression in liver of Ppara LKO, LWT, Ppara KO and WT male mice. There are 36 liver samples, each from an individual mouse. The samples are from Ppara liver KO (LKO), Ppara KO (KO), wild-type (WT) and liver WT (LWT) male mice of 14 week-old from the same genetic background (C57Bl/6J) treated with Fenofibrate (100 mg/kg/day) or vehicle (aqueous solution of gum Arabic 3%) by daily gavage for 10 days. n= 4 mice for LKO, LWT and WT genotypes treated with vehicle; n=3 for KO mice treated with vehicle; n=5 mice for LWT, LKO and KO genotypes treated with fenofibrate; n=4 WT mice treated with fenofibrate. All mice were sacrified at ZT14.
Project description:Homozygous disruption of c-Maf led to embryonic lethality and impaired erythroblastic island formation. c-Maf is expressed in the fetal liver macrophages. It suggests that macrophages are responsible for the lethality of c-Maf knock-out embryos. To search downstream genes of c-Maf, we surveyed genes associated with macrophage function by microarray analysis. keywords: c-Maf, macrophage, erythroblastic islands, WT (c-Maf WT) and c-Maf KO (c-Maf KO) fetal liver macrophages were sorted by a FACSAria cell sorter. Total RNAs from those macrophages were prepared using RNeasy Kit. Genes down-regulated in c-Maf KO macrophages were searched by GeneSpring software.
Project description:To understand the effects of knocking out the 5-LO gene on gene expression in key metabolic target tissues liver. The 5LO KO mouse liver profiling data was analyzed by identifying genes that were up- and down-regulated at selected p value and fold change in the liver of 5LO KO mice compared to the corresponding WT B6 controls.
Project description:Fenofibrate is a specific agonist of the nuclear receptor PPARa. To identify the gene expression under the strict dependence of hepatic PPARa activity, we generated a new mouse strain of PPARa-specific deletion in hepatocyte (albumin-Cre+/- Pparaflox/flox or LKO) and we compared them to total Ppara KO (KO), wild-type (WT) and liver WT (albumin-Cre-/- Pparaflox/flox or LWT) mice. We used microarrays to detail the global programme of gene expression in liver of Ppara LKO, LWT, Ppara KO and WT male mice.
Project description:We conducted RNA-sequencing from three per group C57BL/6J male mice, ten weeks old. Liver tissue was collected from wild-type (WT) and Cryptochrome1 (CRY1) knockout (KO) mice.
Project description:A series of dual-channel gene expression profiles obtained using Rosetta/Agilent Whole Mouse Genome oligonucleotide microarrays, 4 x 44K format, was used to identify sex-dependent and HNF4alpha-dependent differences in gene expression in adult mouse liver. This series is comprised of four sex-genotype combinations: adult male wild-type liver (M-WT), adult female wild-type liver (F-WT), adult male liver-specific HNF4alpha knockout liver (M-KO) and adult female liver-specific HNF4alpha knockout liver (F-KO). Four pools, each comprised of 4 randomly selected individual liver RNAs, were prepared for each sex-genotype combination. The pools were paired randomly to generate 4 separate experimental comparisons: M-WT:F-WT (first array comparison), M-WT:M-KO (second array comparison), F-WT:F-KO (third array comparison), and M-KO:F-KO (fourth array comparison). A total of 4994 HNF4alpha-dependent genes were identified, of which ~1000 fewer genes responded to the loss of HNF4alpha in female liver as compared to male liver. Moreover, 90% of the genes showing sex-specific expression in the liver were shown to lose sex specificity in HNF4alpha-deficient liver. Experiment Overall Design: An Alexa555-labeled cDNA sample is co-hybridized with an Alexa647-labeled cDNA sample. The samples are then dye-swapped and compared again on a second microarray chip. Together, these two mixed cDNA samples are considered a fluorescent reverse pair (dye swap). Similarly, a second fluorescent reverse pair is generated and the two pairs are averaged. The normalized expression ratio for each array is reported along with the two separate intensities. In this way, dye swaps were carried out for each of the four experimental comparisons. Thus, four microarrays, one for each mixed cDNA sample, were hybridized for each of the four fluorescent reverse pairs, giving a total of 16 microarrays.