Project description:Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly people. The disorder of gut microbiota is involved in the pathophysiological process of various neurological diseases, and many studies have confirmed that gut microbiota is involved in the progression of PD. As one of the most effective methods to reconstruct gut microbiota, fecal microbiota transplantation (FMT) has been considered as an important treatment for PD. However, the mechanism of FMT treatment for PD is still lacking, which requires further exploration and can facilitate the application of FMT. As a model organism, Drosophila is highly conserved with mammalian system in maintaining intestinal homeostasis. In this study, there were significant differences in the gut microbiota of conventional Drosophila colonized from PD patients compared to those transplanted from normal controls. And we constructed rotenone-induced PD model in Drosophila followed by FMT in different groups, and investigated the impact of gut microbiome on transcriptome of the PD host. Microbial analysis by 16S rDNA sequencing showed that gut microbiota could affect bacterial structure of PD, which was confirmed by bacterial colonization results. In addition, transcriptome data suggested that gut microbiota can influence gene expression pattern of PD. Further experimental validations confirmed that lysosome and neuroactive ligand-receptor interaction are the most significantly influenced functional pathways by PD-derived gut microbiota. In summary, our data reveals the influence of PD-derived gut microbiota on host transcriptome and helps better understanding the interaction between gut microbiota and PD through gut-brain axis. The present study will facilitate the understanding of the mechanism underlying PD treatment with FMT in clinical practice.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains. 140 samples total. Evaluation of changes in a model community's structure over time after exposure to a consortium of 5 fermented milk product (FMP) strains.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains. 73 samples total. Evaluation of changes in a model community's metatranscriptome over time after exposure to a consortium of 5 fermented milk product (FMP) strains (40 samples); evaluation of the gene expression of the FMP strains in other in vitro conditions, including MRS medium (B. animalis subsp. lactis only, 4 samples) and a commercial FMP fermentation (all 5 strains, 6 samples); evaluation of the gene expression of native human microbiomes before and after the consumption of a commercial FMP (23 samples).
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains.
Project description:Understanding how the human gut microbiota and host are impacted by probiotic bacterial strains requires carefully controlled studies in humans, and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks prior to, 7 weeks during, and 4 weeks following consumption of a commercially-available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied prior to and after gavage with all five sequenced FMP strains.
Project description:The increased consumption of various beverages has been paralleled by an epidemic of several intestinal diseases around the world, such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and colorectal cancer. Mounting evidence have shown that excessive consumption of beverages increases the risk of IBD and IBS. In addition, sugar-sweeter, food additives and food ingredients were identified to play important roles in these conditions. Consuming cold beverage is common among some people, especially in the youngsters. However, whether the cold stress contribute directly to host metabolism, gut barrier and gut-brain axis is unclear. In an intestinal function disorder model induced by cold water in mice, we investigated changes in gut transit, anxiety and depression like behavior. To evaluate the effect of cold water on gut barrier, we investigate the tight junctions in the colon. In addition, we employed RNA sequencing transcriptomic analysis to identify genes potentially driving the gut injury, and in parallel, examine the gut microbiota and metabolites in the feces.In an intestinal function disorder model induced by cold water in mice, we investigated changes in gut transit, anxiety and depression like behavior. To evaluate the effect of cold water on gut barrier, we investigate the tight junctions in the colon. In addition, we employed RNA sequencing transcriptomic analysis to identify genes potentially driving the gut injury, and in parallel, examine the gut microbiota and metabolites in the feces.
Project description:The emerging alphavirus chikungunya virus (CHIKV) has infected millions of people. However, the factors modulating disease outcome remain poorly understood. We show that depletion of the gut microbiota in oral antibiotic-treated or germ-free mice leads to greater CHIKV infection and spread within one day of virus inoculation. Perturbation of the gut microbiota alters TLR7-MyD88 signaling in plasmacytoid dendritic cells (pDCs) and blunts systemic production of type I interferon (IFN). Consequently, circulating monocytes express fewer IFN-stimulated genes and become permissive for CHIKV infection. Reconstitution with a single commensal bacterial species, Clostridium scindens, or its derived metabolite, the bile acid deoxycholic acid, can restore pDC- and MyD88-dependent type I IFN responses to restrict systemic CHIKV infection and transmission back to vector mosquitoes. Thus, commensal gut bacteria modulate antiviral immunity and levels of circulating alphaviruses within hours of infection through a bile acid-pDC-IFN signaling axis, which affects virus dissemination and potentially, epidemic spread
Project description:The emerging alphavirus chikungunya virus (CHIKV) has infected millions of people. However, the factors modulating disease outcome remain poorly understood. We show that depletion of the gut microbiota in oral antibiotic-treated or germ-free mice leads to greater CHIKV infection and spread within one day of virus inoculation. Perturbation of the gut microbiota alters TLR7-MyD88 signaling in plasmacytoid dendritic cells (pDCs) and blunts systemic production of type I interferon (IFN). Consequently, circulating monocytes express fewer IFN-stimulated genes and become permissive for CHIKV infection. Reconstitution with a single commensal bacterial species, Clostridium scindens, or its derived metabolite, the bile acid deoxycholic acid, can restore pDC- and MyD88-dependent type I IFN responses to restrict systemic CHIKV infection and transmission back to vector mosquitoes. Thus, commensal gut bacteria modulate antiviral immunity and levels of circulating alphaviruses within hours of infection through a bile acid-pDC-IFN signaling axis, which affects virus dissemination and potentially, epidemic spread 3 biological replicates were processed per time point and group
Project description:We performed single cell RNAseq of liver cells in acute liver failure model in mice with different microbiome states to unravel cellular changes in the disease and the impact of gut microbiota on the physiology in this disease.
Project description:A recently layer of gene expression regulation is N6-methyladenosine (m6A) mRNA modification. The role of gut microbiota in modulating host m6A epitranscriptomic and gene expression has not been studied. To decipher the role of gut microbiome, we profiled m6A mRNA modification epitranscriptomic mark in conventional mice compared to germ free mice. Transcriptome-wide mapping of host m6A mRNA modifications in four mice tissues allowed us to discover that gut microbiota can greatly impact host m6A mRNA modifications. The expression levels of m6A writers in mice tissues are regulated by gut microbiota. In conclusion, we report transcriptome-wide mapping of host m6A mRNA modifications regulated by gut microbiota. The present study can help better understand the role of the microbiome in host gene expression and host-microbiome interactions.