Project description:We present the draft genome of Nitrospirae bacterium Nbg-4 as a representative of this clade and couple this to in situ protein expression under sulfate-enriched and sulfate-depleted conditions in rice paddy soil. The proteins were extracted from the soil and analysed via LC-MS/MS measurements.
Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.
Project description:Bacillus velezensis strain GH1-13 isolated from a rice paddy soil in Korea has been reported to promote plant growth and inhibit some pathogens. It contains a plasmid pBV71, thought to be of benefit to the strain, but there is no information on its effect. In order to elicit the plasmid effect on gene expression, mRNA and protein levels were analyzed at various stages of bacterial growth. Comparative gene expression profiles between the plasmid-containing and plasmid-free cells revealed that strain GH1-13 activated a transient stress response in the exponential phase. It showed early activation of expression of sigma W operon, liaIHGFSR operon, and transcription regulators for transition state, associated with carbon catabolite repression and secondary metabolite biosynthesis of acetoin, bacillaene, and macrolactin.
Project description:Paddy rice with husk can be availbale for chicken dietary resource instead of yellow corn. Ingestion of paddy rice potentially affects on gastrointestinal physiology and function including digestion/absorption of nutrients and gut barrier function such as mucosal immunity, but the details of changes is unknown. To obtain insight into the physiological modifications in the small intestine of chickens fed paddy rice, we conducted a comprehensive analysis of gene expression in small intestine by DNA microarray. In the paddy rice group, a total of 120 genes were elevated >1.5-fold in the paddy rice group, whereas a total of 159 genes were diminished < 1.5-fold. Remarkably, the gene expression levels of IGHA (immunoglobulin heavy chain α), IGJ (immunoglobulin J chain), and IGLL1 (immunoglobulin light chain λ chain region), which constitute immunoglobulin A, decreased 3 to 10 times in the paddy rice group.