Project description:To carry out population genetics analyses of the Arctic gregion we carried out Illumina Bead-Array-based enotyping on 18 samples from Greenland.
Project description:Background biology: Global warming has accelerated in recent decades, with the Arctic warming 2–3 times faster than the global average. As a result boreal species are expanding into the Arctic, at a pace reflecting environmental warming. Nevertheless, the poleward expansion of boreal marine species is restricted by their ability to tolerate low water temperatures, and in the case of intertidal species, sub-zero air temperatures during winter. In Greenland, however, the number of days with extreme sub-zero air temperatures has decreased by more than 50% since the 1950’s, suggesting that the low air temperature constraint is weakening. Although boreal intertidal species could potentially benefit from this warmer climate to establish populations in the Arctic, recent work has shown that local intertidal summer air temperatures in Greenland can exceed 36°C. This temperature is above the thermoregulatory capacity of many boreal intertidal species, including the highly abundant blue mussel Mytilus edulis. Therefore will further colonisation of M. edulis in Greenland be inhibited by the increasingly warm summer temperatures. Aim of experiment: Intertidal animals (Greenland blue mussel M. edulis) were sampled in situ on the first warm days of the year from the inner (warmer) and outer (cooler) regions of the Godthåbsfjorden around Nuuk (64°N) to examine the fjord temperature gradient effect. In addition, subtidal M. edulis were also collected and subjected to two acute temperature shocks of 22 and 32°C, which represented common and extreme summer air temperatures for intertidal habitats near Nuuk.
Project description:To carry out population genetics analyses of the Arctic gregion we carried out Illumina Bead-Array-based enotyping on 18 samples from Greenland. 19 samples were analysed with the Illumina platform Human660W-Quad v1.0 Genotyping BeadChip and are described herein.
Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses. 18 samples were collected from 3 plots in Haibei Station, with 6 replicates in each plot
Project description:These metaproteomic datasets are from active layer soil samples collected from the area of Toolik Field Station, Arctic Alaska, USA. These datasets are described and analyzed in the forthcoming paper, "Functional partitioning and vegetational variation among Arctic soil bacteria revealed by metaproteomics."
Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses.
2016-05-28 | GSE82006 | GEO
Project description:The dynamic bacterial communities of a melting High Arctic glacier snowpack
Project description:Understanding biological diversity and distribution patterns at multiple spatial scales is a central issue in ecology. Here, we investigated the biogeographical patterns of functional genes in soil microbes from 24 arctic heath sites using GeoChip-based metagenomics and principal coordinates of neighbour matrices (PCNM)-based analysis. Functional gene richness varied considerably among sites, while the proportions of each major functional gene category were evenly distributed. Functional gene composition varied significantly at most medium and broad spatial scales, and the PCNM analyses indicated that 14-20% of the variation in total and major functional gene categories could be attributed primarily to relatively broad-scale spatial effects that were consistent with broad-scale variation in soil pH and total nitrogen. The combination of variance partitioning and multi-scales analysis indicated that spatial distance effects contributed 12% to variation in functional gene composition,whereas environmental factors contributed only 3%. This relatively strong influence of spatial as compared to environmental variation in determining functional gene distributions contrasts sharply with typical microbial phylotype/species-based biogeographical patterns in the Arctic and elsewhere. Our results suggest that the distributions of soil functional genes cannot be predicted from phylogenetic distributions because spatial factors associated with historical contingencies are relatively important determinants of their biogeography.