Project description:Transdifferentiation has been recently described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors (TFs) GATA4, TBX5, MEF2C, MYOCD, NKX2-5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.
Project description:Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally-distant lineage (fibroblasts) into “induced hematopoietic progenitors” (iHPs). We analyzed transcriptomic data for cell undergoing the transdifferentiation process at several time-points of the process.
Project description:Here we show that hematopoietic transcription factors Scl, Lmo2, Runx1 and Bmi1 can convert a developmentally-distant lineage (fibroblasts) into “induced hematopoietic progenitors” (iHPs). We analyzed transcriptomic data for cell undergoing the transdifferentiation process at several time-points of the process.
Project description:We used primary human CHH (cartilage-hair hypoplasia) and control fibroblasts in a chondrogenic transdifferentiation model (FDC; fibroblast-derived chondrocytes) to determine the chondrogenic capacity and differential pathway regulation of CHH cells. For the sequencing experiment, dermal fibroblasts from control donors (n=4) and CHH patients (n=4) were isolated from skin biopsies, plated at high density into wells coated with aggrecan, and cultured for three days in an FDC transdifferentiation medium. Total RNA was isolated at three different time points (Day 0, 1, and 3; in total 24 RNA samples), and sequenced using the NextSeq platform (Illumina).
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. Undifferentiated aHDF- and PB-iPSCs from the same individuals (two Parkinson’s disease patients (PD #1 and PD #2) and one adult healthy donor (donor91))
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Diet High in salt content have been associated with cardiovascular disease and chronic inflammation. We recently demonstrated that transient receptor potential canonical 3 (TRPC3) channels regulate myofibroblast transdifferentiation in hypertrophic scars. Here, we examined how high salt activation of TRPC3 participates in hypertrophic scarring during wound healing. In vitro, we confirmed that high salt increased the TRPC3 protein expression and the marker of myofibroblast alpha smooth muscle actin (α-SMA) in wild-type mice (WT) primary cultured dermal fibroblasts but not Trpc3-/- mice. Activation of TRPC3 by high salt elevated cytosolic Ca2+ influx and mitochondrial Ca2+ uptake in dermal fibroblasts in a TRPC3-dependent manner. High salt activation of TRPC3 enhanced mitochondrial respiratory dysfunction and excessive reactive oxygen species (ROS) production by inhibiting pyruvate dehydrogenase action, that activated ROS-triggered Ca2+ influx and the Rho kinase/MLC pathway in WT mice but not Trpc3-/- mice. In vivo, a persistent high-salt diet promoted myofibroblast transdifferentiation and collagen deposition in a TRPC3-dependent manner. Therefore, this study demonstrates that high salt enhances myofibroblast transdifferentiation and promotes hypertrophic scar formation through enhanced mitochondrial Ca2+ homeostasis, which activates the ROS-mediated pMLC/pMYPT1 pathway. TRPC3 deficiency antagonizes high salt diet-induced hypertrophic scarring. TRPC3 may be a novel target for hypertrophic scarring during wound healing.
Project description:The transcriptome of extracellular vesicles (EVs) from human gingival mesenchymal stem cells (GMSC) hasn't been compenhensively profiled. We performed the RNA-SEQ transcriptomic analysis of EVs from GMSC or Fibroblasts. Guman gingiva samples were collected following routine dental procedures. The primary cultured human dermal fibroblasts were used as a control since them share similar morphologies but lack the functional activities of GMSCs. Primary human dermal fibroblasts were isolated from the foreskin dermis of children aged between 6 and 8 years who underwent surgery.