Project description:Global metaproteomic analyses of microbial biomass from the upper water column of the Central Pacific Ocean. This dataset was used as a discovery dataset to identify peptide biomarkers for cyanobacterial populations for use in targeted metaproteomic calibrated multiple reaction monitoring (MRM) analyses published in in Saito et al., 2014 and 2015. Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., DiTullio, G. R., Post, A. F., and Lamborg, C. H.: Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers, Science, 345, 1173-1177, 2014. Saito, M. A., Dorsk, A., Post, A. F., McIlvin, M., Rappé, M. S., DiTullio, G., and Moran, D.: Needles in the Blue Sea: Sub‐Species Specificity in Targeted Protein Biomarker Analyses Within the Vast Oceanic Microbial Metaproteome, PROTEOMICS, 15, 3521-3531, 2015.
Project description:This SuperSeries is composed of the following subset Series: GSE22171: Pacific salmon gill samples: fate tracking in river, sampled in ocean GSE22177: Pacific salmon gill samples: fate tracking in river GSE22347: Pacific salmon gill samples: fate tracking at spawning grounds Refer to individual Series
Project description:Untargeted proteomics from a 5,000 km+ transect across the central Pacific Ocean from Hawaii to Tahiti. The expedition crossed multiple biogeochemical provinces, inlcuding the oligotrophic North Pacific Subtropical Gyre, the extremety of the Eastern Tropical North Pacific Oxygen Deficient Zone, and the relatively productive equatorial region associated with upwelling. This dataset focuses on the microbial fraction (0.2-3.0 micrometer filter size) and the microbial community dynamics across these biogeochemical provinces, from the surface oceance to the mesopelagic (1,250 m depth maximum).
Project description:Global metaproteomic analyses of microbial biomass from the upper water column of the Central Pacific Ocean. This dataset was used as a discovery dataset to identify peptide biomarkers for cyanobacterial populations for use in targeted metaproteomic calibrated multiple reaction monitoring (MRM) analyses published in in Saito et al., 2014 and 2015. Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., DiTullio, G. R., Post, A. F., and Lamborg, C. H.: Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers, Science, 345, 1173-1177, 2014. Saito, M. A., Dorsk, A., Post, A. F., McIlvin, M., Rappé, M. S., DiTullio, G., and Moran, D.: Needles in the Blue Sea: Sub?Species Specificity in Targeted Protein Biomarker Analyses Within the Vast Oceanic Microbial Metaproteome, PROTEOMICS, 15, 3521-3531, 2015.
Project description:The long-term viability of Pacific salmon stocks and the fisheries they support are threatened if large numbers die prematurely en-route to spawning grounds. Physiological profiles that were correlated with the fate of wild sockeye salmon during river migration were discovered using functional genomics studies on biopsied tissues. Three independent biotelemetry studies tracked the biopsied fish after tagging in the marine environment over 200 km from the Fraser River, in the lower river 69 km from the river mouth and at the spawning grounds. Salmon carrying the poor performance (unhealthy) profile in the ocean exhibited a 4-times lower probability of arriving to spawning grounds than those with a healthy genomic signature, although generally migrated into the river and to the spawning grounds faster. A related unhealthy signature observed in the river was associated with a 30% reduction in survival to spawning grounds in one of the three stocks tested. At spawning grounds, the same poor performance signature was associated with twice the pre-spawning mortality compared with healthy fish. Functional analysis revealed that the unhealthy signature, which intensified during migration to spawning grounds, was consistent with an intracellular pathogenic infection, likely a virus. These results are the first to suggest a pathogen present in salmon in the marine environment could be a major source of mortality during migration and spawning in the river. This series is of gill expression profiles from the study of fish sampled and tagged in the ocean and tracked as they entered the river system and swam towards the spawning grounds.