Project description:Studying the effect of Th1 cytokine IFNg on gene expression of human neutrophils by comparing gene expression of neutrophiles isolated from the blood of 3 healthy donors and stimulated with IFNg (10ng/ml) or left unstimulated.
Project description:Studying the effect of Th2 cytokine IL4 on gene expression of human neutrophils by comparing gene expression of neutrophils isolated from the blood of 3 healthy donors and stimulated with IL-4 (1ng/ml) or left unstimulated.
Project description:Studying the effect of Th2 cytokine IL13 on on gene expression of human neutrophils by comparing gene expression of neutrophiles isolated from the blood of 3 healthy donors and stimulated with IL-13 (10ng/ml) or left unstimulated.
Project description:Gene expression studies comparing IFNg+ Tregs versus IFNg- Tregs from human peripheral blood Ex vivo sorted Tregs (CD25highCD127neg) were stimulated for 4 hours and IFNg-secreting cells were detected by a IFNg-capture kit. The samples were resorted based on IFNg expression.
Project description:Neutrophil gene transcription following lipopolysaccharide exposure. Microarray analysis of lipopolysaccharide-treated human neutrophils. Neutrophils respond to infection by degranulation, release of reactive oxygen intermediates, and secretion of chemokines and cytokines; however, activation of neutrophil transcriptional machinery has been little appreciated. Recent findings suggest that gene expression may represent an additional neutrophil function after exposure to lipopolysaccharide (LPS). We performed microarray gene expression analysis of 4,608 mostly nonredundant genes on LPS-stimulated human neutrophils. Analysis of three donors indicated some variability but also a high degree of reproducibility in gene expression. Twenty-eight verifiable, distinct genes were induced by 4 h of LPS treatment, and 13 genes were repressed. Genes other than cytokines and chemokines are regulated; interestingly, genes involved in cell growth regulation and survival, transcriptional regulation, and interferon response are among those induced, whereas genes involved in cytoskeletal regulation are predominantly repressed. In addition, we identified monocyte chemoattractant protein-1 as a novel LPS-regulated chemokine in neutrophils. Included in these lists are five clones with no defined function. These data suggest molecular mechanisms by which neutrophils respond to infection and indicate that the transcriptional potential of neutrophils is greater than previously thought.
Project description:Neutrophil gene transcription following lipopolysaccharide exposure. Microarray analysis of lipopolysaccharide-treated human neutrophils. Neutrophils respond to infection by degranulation, release of reactive oxygen intermediates, and secretion of chemokines and cytokines; however, activation of neutrophil transcriptional machinery has been little appreciated. Recent findings suggest that gene expression may represent an additional neutrophil function after exposure to lipopolysaccharide (LPS). We performed microarray gene expression analysis of 4,608 mostly nonredundant genes on LPS-stimulated human neutrophils. Analysis of three donors indicated some variability but also a high degree of reproducibility in gene expression. Twenty-eight verifiable, distinct genes were induced by 4 h of LPS treatment, and 13 genes were repressed. Genes other than cytokines and chemokines are regulated; interestingly, genes involved in cell growth regulation and survival, transcriptional regulation, and interferon response are among those induced, whereas genes involved in cytoskeletal regulation are predominantly repressed. In addition, we identified monocyte chemoattractant protein-1 as a novel LPS-regulated chemokine in neutrophils. Included in these lists are five clones with no defined function. These data suggest molecular mechanisms by which neutrophils respond to infection and indicate that the transcriptional potential of neutrophils is greater than previously thought. Keywords: repeat sample
Project description:Microarray used to detail the global gene transcription underlying sorted IFNg+ and IFNg- Tregs (CD4+CD25+CD127lo) and Tconv (CD4+CD25-CD127+) for fresh (unexpanded) and 14 day expanded cells from human blood. Treg and Tconv were FACS isolated from five healthy subjects (median age of 26, range 22-30). Sorted cells were separated into two groups: the first group was stimulated for 4 hours with PMA/ionomycin and labeled with the IFNg cytokine capture kit (Miltenyi Biotech) followed by FACS isolation of IFNg- and IFNg+ populations. The second set was expanded to day 14 prior to reactivation and cytokine cell capture. For each IFNg sorted population, cells were pelleted and flash frozen before RNA isolation and processing.
Project description:Neutrophils are known to be stimulated by different periodontal bacteria to produce reactive oxygen species and cytokines. It is inportant to investigate the gene changes made by bacteria of importance, of which, for periodontal disease, fusobaterium nucleatum is one. we used microarrays to investigate gene experssion changes in peripheral blood neutrophils werwhich e stimulated with or with out Fusobacterium Nucleatum (10953). Neutrophils from periodonatlly healthy individuals (n=4) were isolated and stimulated for 3hrs with or without fusobaterium nucleatum (10953). RNA was then extracted from these and pooled before hybridization on Affymetrix microarrays