Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. The differential feeding regime experienced by the queen and the worker larvae of the honeybee Apis mellifera shapes a complex endocrine response cascade that ultimately sets up differences in brain morphologies. Herein we report on aspects of brain morphogenesis during larval development and the brain gene expression signature of fourth instar larvae (L4) of both castes, a developmental stage characterized by the greatest differences in juvenile hormone (JH) titers between castes Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from brain of fourth instar larvae honeybees of both castes we present a list of differentially expressed genes. Analysis used one dye-swap combination to compare workers and queens brain development at fourth instar larvae when juvenile hormone titers is higher in queens.
Project description:We analyzed the changes in the brain tissue of Apis mellifera ligustica at the molecular level by sequencing after using fluvalinate. We found that the differentially expressed miRNAs (DEM) may be involved in hippocampal cell apoptosis and damage to memory functions. This result may be related to behaviors observed after the administration of this medication, such as a lack of homing at night and behavioral disturbances. Overall, our results provide new information about the molecular mechanisms and pathways of fluvalinate action in the brain tissue of Apis mellifera ligustica.
Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. The differential feeding regime experienced by the queen and the worker larvae of the honeybee Apis mellifera shapes a complex endocrine response cascade that ultimately sets up differences in brain morphologies. Herein we report on aspects of brain morphogenesis during larval development and the brain gene expression signature of fourth instar larvae (L4) of both castes, a developmental stage characterized by the greatest differences in juvenile hormone (JH) titers between castes Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from brain of fourth instar larvae honeybees of both castes we present a list of differentially expressed genes.
Project description:Apis mellifera workers in temperate climates display two castes; short lived summer bees that engage in nursing, hive maintenance and foraging, and long lived winter bees (diutinus bees) which remain within the hive and are essential for thermoregulation. Label free quantitative proteomic analysis was conducted on A. mellifera workers sampled from July to October 2019 to compare the proteomes of workers as the colony progresses through the year. Proteomic analysis revealed a shift in protein expression in workers in September and October in comparison to July and August samples. Workers samples in September and October had a higher abundance of proteins associated with oxidative phosphorylation and storage proteins such as hexamerin. Interestingly, a shift in protein expression was detected in newly emerged bees between July to October, providing evidence that workers have adapted to emerge with a different protein profile in preparation for the winter months.
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees. Comparisons of control vs Nosema ceranae bees
Project description:Apis mellifera syriaca is the native honeybee subspecies of Jordan and much of the Middle East. It expresses behavioral adaptations to a regional climate with very high temperatures, nectar dearth in summer, attacks of the Oriental wasp Vespa orientalis and in most cases it is resistant to varroa mites. The Thorax control sample of A. m. syriaca in this experiment was originally collected and stored since 2001 from Wadi Ben Hammad a remote valley in the southern region of Jordan. Using morphometric and Mitochondrial DNA markers it was proved that bees from this area had show higher similarity than other samples collected from the Middle East as represented by reference samples collected in 1952 by Brother Adam. The samples L1-L5 are collected from the National Center for Agricultural Research and Extension breading apiary which was originally established for the conservation of Apis mellifera syriaca. Goal was to use the genetic information in the breeding for varroa resistant bees and to determine the successfulness of this conservation program. Project funded by USAID-MERC grant number: TA-MOU-09-M29-075.