Project description:TFE3 is a bHLH-ZIP transcription factor, which nuclear localization is regulated by a tumor suppressor FLCN. In order to analyze TFE3 occupancy in whole genome, we have generated and utilized a HK-2 HA-TFE3-inducible cell line which express HA-tagged TFE3 in a doxycycline-dependent manner. HA-TFE3 bound regions were determined by ChIPSeq.
Project description:The bHLH transcription factor Tfe3 is a powerful regulator of pluripotency and we report a genome-wide analysis of Tfe3 occupancy in mouse ES cells. Nuclear localization of Tfe3 is inhibited by a protein complex containing the tumor-suppressor Folliculin (Flcn) and we also determine Tfe3 binding sites in ES cells expressing an shRNA targeting Flcn. Specificity is controlled for by using unspecific IgGs and ES cells expressing an shRNA targeting Tfe3. ChIP-Seq profiling of Tfe3 in ES cells
Project description:The bHLH transcription factor Tfe3 is a powerful regulator of pluripotency and we report a genome-wide analysis of Tfe3 occupancy in mouse ES cells. Nuclear localization of Tfe3 is inhibited by a protein complex containing the tumor-suppressor Folliculin (Flcn) and we also determine Tfe3 binding sites in ES cells expressing an shRNA targeting Flcn. Specificity is controlled for by using unspecific IgGs and ES cells expressing an shRNA targeting Tfe3.
Project description:Here we performed a ChIP-seq experiment on a sample of adherent cultures of mouse neural stem cells (NS5 cell line) expressing an inducible HA-tagged version of the proneural factor MyT1 (MyT1-HA, under TetON control) after activation by doxycycline hyclate (DOX). This resulted in the generation of a genome-wide map of MyT1-HA binding to chromatin.
Project description:To understand the activation of the MITF/TFE transcription factors in effective defense against pathogens we examined the genome wide distribution of TFE3 in control and activated mouse macrophages. It was determined that TFEB and TFE3 collaborate with each other to promote efficient autophagy induction, increased lysosomal biogenesis, and transcriptional upregulation of proinflammatory cytokines and key mediators of the inflammatory response. 4 samples were analyzed: Background Control, Control, Starvation, LPS
Project description:Birt-Hogg-Dubè (BHD) syndrome is an inherited condition caused by loss-of-function mutations in the gene encoding the tumor-suppressor protein folliculin (FLCN) and frequently associated with kidney cysts and cancer. FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We previously showed that deletion of TFEB rescued the renal cystic phenotype of kidney-specific Flcn KO mice. Using Flcn/TFEB/TFE3 double and triple KO mice we now show that both TFEB and TFE3 contribute, in a differential and cooperative manner, to kidney cystogenesis. Importantly, silencing of either TFEB or TFE3 rescued tumorigenesis in patient-derived xenografts (PDXs) generated from a kidney tumor of a BHD patient. Furthermore, transcriptome analyses performed in transgenic mice, PDXs and patient tumor samples revealed TFEB/TFE3 downstream targets that may contribute to their tumorigenic activity. Our findings demonstrate in disease-relevant models that TFEB and TFE3 are key drivers of kidney tumorigenesis and suggest novel therapeutic strategies based on the inhibition of these transcription factors.