Project description:Gene expressions obtained from the total RNA sequencing of 2 choriocarcinomas, 4 epithelioid trophoblastic tumors, and 4 placental site trophoblastic tumors were evaluated for differential gene expression, pathway alteration, fusion gene, infiltrating immune cell type, and PD-L1 expression level, and mutation analysis was performed using the RNA sequencing data.
Project description:Purpose was to determine whether varying gestational trophoblastic disease samples exhibit differences in RNA expression and fusion transcripts.
Project description:The term gestational trophoblastic disease (GTD) describes a range of pathologies derived from the villous trophoblasts of the placenta. These include benign entities such as partial and complete hydatidiform mole as well as invasive cancers such as gestational choriocarcinoma, placental site trophoblastic tumors, and epithelioid trophoblastic tumors. Collectively, the malignant forms of GTD are known as gestational trophoblastic neoplasia (GTN). The risk of GTN following a complete molar pregnancy ranges between 8-25%. Low risk patients are expected to have a high likelihood of response to single agent chemotherapy with methotrexate or actinomycin D, but the incidence of resistance to single agent chemotherapy among low risk patients remains 25-50%. We used gene expression microarrays to compare methotrexate sensitive trophoblastic cell lines to sublines that were conditioned to become methotrexate resistant.
Project description:A placental site trophoblastic tumor (PSTT), characterized by mononuclear and multinuclear extravillous trophoblasts that penetrate the uterus and its vessels, is a rare gestational trophoblastic neoplasia. Due to its rarity, the prognostic factors and ideal treatment are unclear. Recurrent PSTT is thought to be resistant to chemotherapy, but monoclonal antibodies, such as the anti-programmed cell death protein 1 (PD-1) agent pembrolizumab, have recently been reported to be clinically effective for several cancers. We present a recurrent and chemo-resistant PSTT case exhibiting complete response after administration of pembrolizumab. This case suggests a new approach for the management of drug-resistant PSTT.
Project description:The human placenta is covered by a single multinucleated fetal cell, the syncytiotrophoblast, which is bathed in maternal blood. During all pregnancies, membrane enclosed extracellular vesicles derived from the syncytiotrophoblast are extruded into the maternal blood.The large size of these extracellular vesicles (diameter larger than 10µm) is referred to as trophoblastic debris in this study. We have shown in the past that endothleial cells are involved in clearence of this trophoblastic debris and induction of immune tolerence by trophoblastic debris.This study aimed to characterise the transcriptional changes that occur in human vascular endothelial cells following exposure to trophoblastic debris from normal first trimester placentae. Microarrays were used to probe transcriptomic changes 2 and 21 hours after exposure of endothelial cells (Human microvascular endothelial cell line,HMEC-1) to trophoblastic debris from normal first trimester placentae
Project description:The human placenta is covered by a single multinucleated fetal cell, the syncytiotrophoblast, which is bathed in maternal blood. During all pregnancies, membrane enclosed extracellular vesicles derived from the syncytiotrophoblast are extruded into the maternal blood.The large size of these extracellular vesicles (diameter larger than 10µm) is referred to as trophoblastic debris in this study. We have shown in the past that endothleial cells are involved in clearence of this trophoblastic debris and induction of immune tolerence by trophoblastic debris.This study aimed to characterise the transcriptional changes that occur in human vascular endothelial cells following exposure to trophoblastic debris from normal first trimester placentae. Microarrays were used to probe transcriptomic changes 2 and 21 hours after exposure of endothelial cells (Human microvascular endothelial cell line,HMEC-1) to trophoblastic debris from normal first trimester placentae Trophoblastic debris were isolated by low speed centrifugation from three individual first trimester human placentae (three biological replicates). The protein content in trophoblastic debris was measured by BCA assay. HMEC-1 was co-cultured with trophoblastic debris (60ug/ml total debris protein contents) for either 2 or 21 hours before RNA extraction. Untreated HMEC-1 at 2 and 21 hours were used as controls.In total, 12 samples were analyzed.