Project description:Maternal high fat diet may disturb susceptibility in offspring. liver from maternal high fat diet has CpG sites that exhibit differential DNA methylationregulated compared to control.
Project description:Maternal chromium restriction may disturb susceptibility in offspring. Adipose from maternal chromium diet has 1214 CpG sites that exhibit differential DNA methylationregulated compared to control. We performed DNA methylation array analyses of offspring adipose from chromium restriction dams and control diet dams at 32 week (n=3 per group).
Project description:Maternal high fat diet may disturb susceptibility in offspring. Brown adipose tissue from maternal high fat diet has CpG sites that exhibit differential DNA methylationregulated compared to control.
Project description:The goal was to study the long term metabolic programming effects of exposure of offspring to a dam eating 60% high fat diet during the lactation period only. We previously showed that offspring from dams given lactational high fat diet (HFD) are predisposed to obesity, glucose intolerance and inflammation. The purpose of these studies was to understand the programming implications of lactational HFD on offspring metabolic liver disease risk. Dams were fed a 60% lard-based HFD from the day of delivery through the 21 day lactation period. Starting at weaning offspring were fed normal fat diet until 3 months of age at which point a subset were challenged with an additional HFD stressor. Lactational HFD fed male offspring developed hepatic insulin resistance. Postweaning HFD challenge led male offspring progressing to NAFLD with more severe outcomes in the lactational HFD challenged offspring.
Project description:Maternal high fat diet may disturb susceptibility in offspring. liver from maternal inulin early intervention has CpG sites that exhibit differential DNA methylationregulated compared to high fat diet.
Project description:Maternal diet is associated with the development of metabolism-related and other non-communicable diseases in offspring. Underlying mechanisms, functional profiles, and molecular markers are only starting to be revealed. Here, we explored the physiological and molecular impact of maternal Western-style diet on the liver of male and female offspring. C57BL/6 dams were exposed to either a low fat/low cholesterol diet (LFD) or a Western-style high fat/high cholesterol diet (WSD) for six weeks before mating, as well as during gestation and lactation. Dams and offspring were sacrificed at postnatal day 14, and body, liver, and blood parameters were assessed. The impact of maternal WSD on the pups' liver gene expression was characterised by whole-transcriptome microarray analysis. Exclusively male offspring had significantly higher body weight upon maternal WSD. In offspring of both sexes of WSD dams, liver and blood parameters, as well as hepatic gene expression profiles were changed. In total, 686 and 604 genes were differentially expressed in liver (pM-bM-^IM-$0.01) of males and females, respectively. Only 10% of these significantly changed genes overlapped in both sexes. In males, in particular alterations of gene expression with respect to developmental functions and processes were observed, such as Wnt/beta-catenin signalling. In females, mainly genes important for lipid metabolism, including cholesterol synthesis, were changed. We conclude that maternal WSD affects physiological parameters and induces substantial changes in the molecular profile of the liver in two-week-old pups. Remarkably, the observed biological responses of the offspring reveal pronounced sex-specificity. C57BL/6 dams were exposed to either a low fat/low cholesterol diet (LFD) or a Western-style high fat/high cholesterol diet (WSD) as six weeks pre-treatment before mating, as well as during gestation and lactation. Offspring were sacrificed at postnatal week two, livers were removed and RNA samples were subjected to gene expression profiling.
Project description:Maternal chromium restriction may disturb susceptibility in offspring. Adipose from maternal chromium diet has 935 genes that exhibit differential DNA methylationregulated compared to control.
Project description:Maternal chromium restriction may disturb susceptibility in offspring. Liver from maternal chromium diet has 8 up- and 6 down- regulated miRNAs, compared to control.