Project description:We aimed to elucidate the effects of feeding condition (indoor grain-feeding vs. grazing on pasture) on c-miRNAs in Japanese Black (JB) cattle (Wagyu). The cattle at 18 months old were divided into pasture feeding and conventional indoor grain feeding for 5 months. Microarray analysis of c-miRNAs from the plasma extracellular vesicles led to the detection of a total of 202 bovine miRNAs in the plasma, including 15 miRNAs that differed between the feeding conditions.
Project description:Neotyphodium coenophialum is an endophytic fungus that infects most tall fescue (Festuca arundinacea) pastures that are commonly used in animal grazing systems in the United States. Beef cattle grazing such pastures are impaired in health and production performance, resulting in a large economic loss in US food-animal production systems. Based on the clinical symptoms and laboratory analyses of blood, it was hypothesized that such affected cattle display liver-specific changes in the expression of gene transcripts that are associated with the metabolic enzymes and transporters critical for beef health and performance. Microarray analysis using the GeneChip Bovine Genome Array (Affymetrix, Inc., Santa Clara, CA) was conducted to determine if grazing endophyte-infected tall fescue pastures affects the liver gene expression profiles of growing beef steers. Nineteen steers were assigned to graze either a low toxic endophyte tall fescue-mixed grass (LE treatment, 5.7 ha, n = 9) or a high toxic endophyte infected tall fescue (HE treatment, 5.7 ha, n = 10) pasture located in the University of Kentucky Agricultural Research Center. All steers had ad libitum access to fresh water and an industry standard mineral-vitamin supplement. 88 days grazing on pasture. Approximately 2 g of tissue from the right lobe of the liver of each steer were collected for RNA extraction and microarray analysis.