Project description:Identify transcriptionnally and translationally regulated mRNA in melanoma parental and persister cells In this dataset, we include expression data of A375 melanoma drug-naïve parental cells and A375 melanoma persister cells that survived from BRAF and MEK inhibition. The expression data are studied in both total RNA and polysome-bounded RNA.
Project description:Vemurafenib is a BRAF inhibitor with specificity for the most common BRAF mutant encountered in melanomas (BRAFV600E). Vemurafenib suppresses the proliferation of BRAF mutant human melanoma cells by suppressing downstream activation of the MEK/ERK mitogen activated protein kinases. We used microarrays to examine the transcriptional response of a vemurafenib-sensitive BRAFV600E human melanoma cell line (A375) to vemurafenib in order to further delineate the mechanisms by which BRAFV600E drives cell proliferation and energy metabolism in human melanoma. BRAFV600E A375 human melanoma cells were treated with vehicle (0.1% DMSO) or 10 uM vemurafenib for 24 h after which total RNA was extracted. Cells were prepared and RNA was extracted in 3 separate batches (three different cell stocks on three separate days) providing three independent replicates (n=3). Paired replicates (prepared from the same stock of cells on the same day) are denoted by A, B and C.
Project description:Reactive oxygen species (ROS) are implicated in tumor transformation by modulating proteins involved in differentiation, proliferation and invasion. In order to identify genes that may support melanoma progression or regression after an antioxidant system (AOS) response, we developed and characterized a human melanoma cell model with different levels of ROS by stably overexpressing the antioxidant enzyme catalase in A375 amelanotic melanoma cells, and whole genome gene expression patterns were analyzed by microarrays. We used gene expression microarrays to study the AOS global response to catalase overexpression and to identify up-regulated and down-regulated genes during progression or regression of melanoma.
Project description:BRAF-inhibitor (BRAFi)-resistance compromises long term survivorship of malignant melanoma patients, and mutant NRAS is a major mediator of BRAFi-resistance. We have employed NanoString nCounterTM transcriptomic analysis of isogenic human malignant melanoma cells that differ only by NRAS mutational status (BRAFi-sensitive A375-BRAFV600E/NRASQ61 versus BRAFi-resistant A375-BRAFV600E/NRASQ61K), identifying modulation of specific gene expression networks as a function of NRASQ61K-status.