ABSTRACT: Comparatively transcriptomic analysis revealed outperforming photosynthesis, water retention, and stress responding gene expressions of a sugarcane providing high yield under drought.
Project description:Comparatively transcriptomic analysis revealed outperforming photosynthesis, water retention, and stress responding gene expressions of a sugarcane providing high yield under drought
Project description:Background: Sugarcane is an important sugar and energy crop largely used for bioethanol production in the world. The development of sugarcane cultivars with high sucrose content and yield is one of the biggest challenges of breeding programs nowadays. To identify genes networks that underlie sucrose content and yield, we used a custom designed oligonucleotide array with 21,901 different probes to study the transcriptome from breeding populations of sugarcane contrasting to sucrose content and genotypes contrasting to photosynthesis rate. Results: Physiological and biochemical data reveals that the transcriptome profiles described here showed a close relationship between sucrose content and stem development. A total of 2135 genes were differentially expressed in at least one experimental hybridization. We identified genes related to carbohydrate metabolism, cell wall metabolism and signal transduction. The same oligoarrays was used to detect transcription in both sense and antisense orientation. The enriched functional category from antisense expressed genes reveals light harvesting and circadian clock as the two top categories that can be related to photosynthesis and yield in sugarcane. Conclusions: Knowledge on the mechanisms underlying carbon partitioning and its relationship with sucrose accumulation in sugarcane stems would help defines routes to increase yield. Our findings showed for instance that sucrose accumulation and yield in sugarcane may be regulated by hormone signaling pathways, light harvesting and circadian clock genes. Analysis of the expression data and gene category enrichment provided an insight into signaling pathways and transcriptional control contrasting in high brix and low brix plants as well as differing photosynthesis rates and yield.
Project description:Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated to PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological program leading to higher grain yield (GY) under normal, drought and high temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high temperature environmental stress conditions. To assess the role of increased HYR expression in rice, whole-genome microarrays were used to generate gene expression profiles of rice cultivar Nipponbare transformed with an overexpression construct of the HYR gene (Loc_Os03g02650) under control of the CaMV 35S promoter, along with control wild-type (WT) lines.
Project description:Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated to PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological program leading to higher grain yield (GY) under normal, drought and high temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high temperature environmental stress conditions. To assess the role of increased HYR expression in rice, whole-genome microarrays were used to generate gene expression profiles of rice cultivar Nipponbare transformed with an overexpression construct of the HYR gene (Loc_Os03g02650) under control of the CaMV 35S promoter, along with control wild-type (WT) lines. Two biological replicate samples each from the HYR and WT-control lines were profiled using rice whole-genome microarrays.
Project description:Results: In this study, the ears at the V9 stage, kernels and ear leaf at the 5DAP (days after pollination) stage of maize were used for morphological, physiological and comparative transcriptomics analysis to understand the different features of “sink” or “source” organs and the effects on kernel yield under drought stress conditions. The ABA-, NAC-mediate signaling pathway, osmotic protective substance synthesis and protein folding response were identified as common drought stress response in the three organs. Tissue-specific drought stress responses and the regulators were identified, they were highly correlated with growth, physiological adaptation and yield loss under drought stress. For ears, drought stress inhibited ear elongation, led to the abnormal differentiation of the paired spikelet, and auxin signaling involved in the regulation of cell division and growth and primordium development changes. In the kernels, reduced kernel size caused by drought stress was observed, and the obvious differences of auxin, BR and cytokine signaling transduction appeared, which indicated the modification in carbohydrate metabolism, cell differentiation and growth retardation. For the ear leaf, dramatically and synergistically reduced the expression of photosynthesis genes were observed when suffered from drought stress, the ABA- and NAC- mediate signaling pathway played important roles in the regulation of photosynthesis. Conclusions: Transcriptomic changes caused by drought were highly correlated with developmental and physiological adaptation, which was closely related to the final yield of maize, and a sketch of tissue- and developmental stage-specific responses to drought stress in maize was drafted.
Project description:Plants evolved several acquired tolerance traits for drought stress adaptation to maintain the cellular homeostasis. The combination of constitutive and acquired traits governs drought tolerance, which is crucial for maintaining crop productivity under drought. Drought affects protein synthesis, to uncover the translational landscape with response to drought stress in rice, polysome bound mRNA sequencing at anthesis stage in resistant APO and sensitive IR64 genotypes were performed. Our results demonstrate that drought tolerant genotype maintains higher transcripts bound to poly-ribosomes which facilitate higher protien synthesis which impacted on photosynthesis, spikelet fertility, seed filing and yield under drought stress. We identified many novel LncRNAs and relevant genes associated with translation which can play important role in manitaing grain protein content with drought tolerance.
Project description:Drought is a main environment stress which severely inhibits the stem growth of ramie and lead to a decrease of the fiber yield. The mechanisms of ramie responding to drought stress are poorly understood. Using Illumina sequencing, approximately 4.8 million (M) 21-nt cDNA tags were sequenced in the cDNA library derived from the drought-stressed ramie (DS), and about 4.7 M were sequenced in the cDNA library constructed from the control ramie under well water condition (CO). The tags generated from two libraries were aligned with ramie transcriptome to annotate their function and a total of 23,912 and 22,826 ramie genes were matched by these tags of DS and CO library, respectively. Comparison of gene expression level between CO and DS ramie based on the differences of tag frequencies appearing in two libraries revealed that 1101 and 505 genes were respectively up- and down- regulated under drought stress. Pathway enrichment analysis identified a set of significantly enriched pathways of DEGs. A series of candidate genes and pathways that may contribute to drought tolerance in ramie will be helpful for further improving ramie drought tolerance ability. 3' tag-based DGE libraries were generated to exam the differentially expressed gene between drought-stressed and well-watered ramie
Project description:The Overexpression of AtCAMTA5 leads to higher plant weight and seed weight as compare to Col-0. Under drought condition overexpression lines had reduce water loss,high water use efficiency decline in photosynthesis contributes to 95% survivability wherase Col-0 and camta5 showed enhance sensitivity.Microarray analysis revealed that AtCAMTA5 regulates genes enriched with CAMTA recognition motif like ANAC19, SPL16, aminotransferase, chitinase, MAPK7, SnRK2.2, E3-ligase, RUBISCO, PSI and PSII, etc which were involved in stress response, development, protein modification and photosynthesis. We used affymatrix expression analysis to validate role of CAMTA5 under drought stress along with physiological and biochemical assay.
Project description:In order to increase our understanding on the epigenetic regulation in response to abiotic stresses in plants, sRNA regulation in sugarcane plants submitted to drought stress was analyzed. Deep sequencing analysis was carried out to identify the sRNA regulated in leaves and roots of sugarcane cultivars with different drought sensitivities. An enrichment of 22-nt sRNA species was observed in leaf libraries. The pool of sRNA selected allowed the analysis of different sRNA classes (miRNA and siRNA). Twenty eight and 36 families of conserved miRNA were identified in leaf and root libraries, respectively. Dynamic regulation of miRNA was observed and the expression profile of eight miRNA was verified in leaf samples by stem-loop qRT-PCR assay. Altered miRNA regulation was correlated with changes in mRNA levels of specific targets. 22-nt miRNA triggered siRNA-candidates production by cleavage of their targets in response to drought stress. Some genes of sRNA biogenesis were down-regulated in tolerant genotypes and up-regulated in sensitive in response to drought stress. Our analysis contributes to increase the knowledge on the roles of sRNA in epigenetic-regulatory pathways in sugarcane submitted to drought stress. Screenning of sRNA transcriptome of sugarcane plants under drougth stress
Project description:Drought is a main environment stress which severely inhibits the stem growth of ramie and lead to a decrease of the fiber yield. The mechanisms of ramie responding to drought stress are poorly understood. Using Illumina sequencing, approximately 4.8 million (M) 21-nt cDNA tags were sequenced in the cDNA library derived from the drought-stressed ramie (DS), and about 4.7 M were sequenced in the cDNA library constructed from the control ramie under well water condition (CO). The tags generated from two libraries were aligned with ramie transcriptome to annotate their function and a total of 23,912 and 22,826 ramie genes were matched by these tags of DS and CO library, respectively. Comparison of gene expression level between CO and DS ramie based on the differences of tag frequencies appearing in two libraries revealed that 1101 and 505 genes were respectively up- and down- regulated under drought stress. Pathway enrichment analysis identified a set of significantly enriched pathways of DEGs. A series of candidate genes and pathways that may contribute to drought tolerance in ramie will be helpful for further improving ramie drought tolerance ability.